Re: Tricky visualization of maximization problem
- To: mathgroup at smc.vnet.net
- Subject: [mg71007] Re: [mg71004] Tricky visualization of maximization problem
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 4 Nov 2006 23:07:01 -0500 (EST)
- Reply-to: hanlonr at cox.net
expr=x1^2 + 4*x1*x2 + 3*x2^2; sub1=x2->Sqrt[1-x1^2]; f1[x1_] = Simplify[expr/.sub1]; pts1={x1,f1[x1]}/.Solve[f1'[x1]==0,x1]// Simplify {{-Sqrt[(1/10)*(5 + Sqrt[5])], 2 - Sqrt[5]}, {Sqrt[(1/10)*(5 - Sqrt[5])], 2 + Sqrt[5]}} Plot[f1[x1],{x1,-1,1},Epilog-> {Red,AbsolutePointSize[5],Point/@pts1}]; pt3D1=({x1,x2,expr}/.sub1)/. {x1->pts1[[2,1]]}//Simplify {Sqrt[(1/10)*(5 - Sqrt[5])], Sqrt[(1/10)*(5 + Sqrt[5])], 2 + Sqrt[5]} sub2=x2->-Sqrt[1-x1^2]; f2[x1_] = Simplify[expr/.sub2]; pts2={x1,f2[x1]}/.Solve[f2'[x1]==0,x1]// Simplify {{Sqrt[(1/10)*(5 + Sqrt[5])], 2 - Sqrt[5]}, {-Sqrt[(1/10)*(5 - Sqrt[5])], 2 + Sqrt[5]}} Plot[f2[x1],{x1,-1,1},Epilog-> {Red,AbsolutePointSize[5],Point/@pts2}]; pt3D2=({x1,x2,expr}/.sub2)/. {x1->pts2[[2,1]]}//Simplify {-Sqrt[(1/10)*(5 - Sqrt[5])], -Sqrt[(1/10)*(5 + Sqrt[5])], 2 + Sqrt[5]} Needs["Graphics`"]; DisplayTogether[ Plot3D[expr*Boole[x1^2+x2^2<1], {x1,-1,1},{x2,-1,1}, Mesh->False,PlotPoints->125], Show[Graphics3D[{Red,AbsolutePointSize[6], Point/@{pt3D1,pt3D2}}]]]; Bob Hanlon ---- Uwe Ziegenhagen <newsgroup at ziegenhagen.info> wrote: > Hi, > > I want to maximize > > x1^2 + 4*x1*x2 + 3*x2^2 (eq.1) > > under the constraint > > x1^2 + x2^2 == 1 (eq. 2) > > So far no problem, Maximize gives me 2 + sqrt(5) > > But how can I display this visually? > > For eq. 1 I can use Plot3D[], for eq. 2 ImplicitPlot[] but how to have > them in one picture? > > > Thanks in advance, > > > Uwe > -- Bob Hanlon hanlonr at cox.net