Re: Question about trig simplify
- To: mathgroup at smc.vnet.net
- Subject: [mg71168] Re: [mg71099] Question about trig simplify
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Thu, 9 Nov 2006 03:40:21 -0500 (EST)
- References: <200611081115.GAA22432@smc.vnet.net>
Compare the LeafCounts: In[1]:=In[1]:= LeafCount[2*Sin[a]*Cos[a]] Out[1]= 6 In[2]:= LeafCount[Sin[2a]] Out[2]= 4 So the simplified expression is "simpler" according to the defaul ComplexityFunction (which is more or less LeafCount). On the other hand: In[4]:= LeafCount[-Sin[2 a]] Out[4]= 6 In[5]:= LeafCount[-2Cos[a] Sin[a]] Out[5]= 6 So there is no ground for replacing one expression by the other. You need to use a different ComplexityFunction. I like to use this: VisibleSimplify[expr_, opts___] := Simplify[ expr, opts, ComplexityFunction -> \ (StringLength[ToString[TraditionalForm[#]]] &)] Then: In[11]:= VisibleSimplify[2*Sin[a]*Cos[a]] Out[11]= Sin[2*a] In[12]:= VisibleSimplify[-2*Cos[a]*Sin[a]] Out[12]= -Sin[2*a] Andrzej Kozlowski Tokyo, Japan On 8 Nov 2006, at 20:15, Robert Pigeon wrote: > > Hello all, > Is this a bug? > > 2*Sin[a]*Cos[a] // Simplify gives Sin[2 a] as expected. > > But > > -2*Sin[a]*Cos[a] // Simplify gives -2*Cos[a]*Sin[a] ...... Why? > If I do -2*(Sin[a]*Cos[a]) // Simplify I get the same answer. > > This comes from the rotation matrix: r = {{Cos[a],Sin[a]},{-Sin > [a],Cos[a]}}. > Then I do: r.r // Simplify. That gives: {{Cos[2 a],Sin[2 a]},{-2 Cos > [a] > Sin[a],Cos[2 a]}}. It does not matter if I do a FullSimplify > instead of > Simplify. > > After if I do r.r.r // Simplify. The answer is simplified correctly. > > I am using Mathematica 5.2 on Windows XP Home. > > Any idea? > > Robert > > Robert Pigeon > TZ = -5 >
- References:
- Question about trig simplify
- From: Robert Pigeon <robert.pigeon@videotron.ca>
- Question about trig simplify