Question about Reduce
- To: mathgroup at smc.vnet.net
- Subject: [mg71272] Question about Reduce
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sun, 12 Nov 2006 06:48:45 -0500 (EST)
Consider the following simple quadratic equation eq = a*x^2 + b*x + c == 0; Solve[eq, x] {{x -> (-b - Sqrt[b^2 - 4*a*c])/(2*a)}, {x -> (-b + Sqrt[b^2 - 4*a*c])/(2*a)}} For the complete set of solutions we use Reduce Reduce[eq, x] (a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == (-b + Sqrt[b^2 - 4*a*c])/(2*a))) || (a == 0 && b != 0 && x == -(c/b)) || (c == 0 && b == 0 && a == 0) The following commnds give the desired results Reduce[eq && b^2 - 4*a*c < 0, x, Reals] False Reduce[eq && a == 0, x] (a == 0 && b != 0 && x == -(c/b)) || (c == 0 && b == 0 && a == 0) Reduce[eq && c == 0 && a == 0, x] (c == 0 && b == 0 && a == 0) || (c == 0 && a == 0 && b != 0 && x == 0) Howver why the following don't simplify to the double root? Reduce[a*x^2 + b*x + c == 0 && b^2 - 4*ac == 0 && a != 0, x] ac == b^2/4 && a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == (-b + Sqrt[b^2 - 4*a*c])/(2*a)) Reduce[a*x^2 + b*x + c == 0 && ac == b^2/4 && a != 0, x] ac == b^2/4 && a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == (-b + Sqrt[b^2 - 4*a*c])/(2*a)) Thanks in advance for any help!