Re: Question about Reduce
- To: mathgroup at smc.vnet.net
- Subject: [mg71311] Re: Question about Reduce
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 14 Nov 2006 05:06:35 -0500 (EST)
- References: <ej735s$j0g$1@smc.vnet.net>
Thanks to anyone that replied to me. Regards Dimitris dimitris wrote: > Consider the following simple quadratic equation > > eq = a*x^2 + b*x + c == 0; > > Solve[eq, x] > {{x -> (-b - Sqrt[b^2 - 4*a*c])/(2*a)}, {x -> (-b + Sqrt[b^2 - > 4*a*c])/(2*a)}} > > For the complete set of solutions we use Reduce > > Reduce[eq, x] > (a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == (-b + Sqrt[b^2 > - 4*a*c])/(2*a))) || (a == 0 && b != 0 && x == -(c/b)) || (c == 0 && b > == 0 && a == 0) > > The following commnds give the desired results > > Reduce[eq && b^2 - 4*a*c < 0, x, Reals] > False > > Reduce[eq && a == 0, x] > (a == 0 && b != 0 && x == -(c/b)) || (c == 0 && b == 0 && a == 0) > > Reduce[eq && c == 0 && a == 0, x] > (c == 0 && b == 0 && a == 0) || (c == 0 && a == 0 && b != 0 && x == 0) > > Howver why the following don't simplify to the double root? > > Reduce[a*x^2 + b*x + c == 0 && b^2 - 4*ac == 0 && a != 0, x] > ac == b^2/4 && a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == > (-b + Sqrt[b^2 - 4*a*c])/(2*a)) > > Reduce[a*x^2 + b*x + c == 0 && ac == b^2/4 && a != 0, x] > ac == b^2/4 && a != 0 && (x == (-b - Sqrt[b^2 - 4*a*c])/(2*a) || x == > (-b + Sqrt[b^2 - 4*a*c])/(2*a)) > > Thanks in advance for any help!