ContourFindRoot
- To: mathgroup at smc.vnet.net
- Subject: [mg71302] ContourFindRoot
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 14 Nov 2006 05:06:19 -0500 (EST)
Below we construct a routine, which will take two equations {f[x,y]=0, g[x,y]=0} and return all the simultaneous solutions (only the crossings; not tangencies) in a rectangle. The basic steps of the routine are the following: First, we generate a contour plot of f[x,y]=0, go into the graphics objects that results, and gather up the data the data making up the curves. Then, on each curve, we evaluate g. The places where g changes sign correspond to solutions; perhaps not very accurate. We next send them to FindRoot in order to get exact solution. ---------------------------------------------------------------------------------------------------------------------- Clear["Global`*"] Off[General::spell1] CurveFindRoot::usage = "CurveFindRoot[{f,g},{x,xmin,xmax},{y,ymin,ymax},curve\ ,points,opts]\nfinds all nontangential solutions to {f=0, g=0}, on a contour \ line."; ContourFindRoot::usage = "ContourFindRoot[{f,g},{x,xmin,xmax},{y,ymin,ymax},p\ oints,opts]\nfinds all nontangential solutions to {f=0, g=0}. in a rectangle \ in the 2D domain"; ContourPlotFunctionRoots::usage = "ContourPlotFunctionRoots[{f,g},{x,xmin,xma\ x},{y,ymin,ymax},points,roots,optsplot]\ngives the graph of curves and \ zeros."; CurveFindRoot[{f_, g_}, {x_, x0_, x1_}, {y_, y0_, y1_}, curve_, points_, opts___] := Block[{contourdata, pos, seeds, gg}, contourdata = Cases[Graphics[ContourPlot[f, {x, x0, x1}, {y, y0, y1}, Contours -> {0}, ContourShading -> False, PlotPoints -> points, DisplayFunction -> Identity]], Line[a_] :> a, Infinity]; gg = Function[{x, y}, Evaluate[g]]; pos = Position[Partition[Apply[gg, contourdata[[curve]], {1}], 2, 1], _?(Times @@ #1 < 0 & ), {1}]; seeds = contourdata[[curve, Flatten[pos]]]; (FindRoot[{f == 0, g == 0}, {x, #1[[1]]}, {y, #1[[2]]}, opts] & ) /@ seeds] ContourFindRoot[{f_, g_}, {x_, x0_, x1_}, {y_, y0_, y1_}, points_, opts___] := Block[{lengthcontourdata, roots}, lengthcontourdata = Length[Cases[Graphics[ContourPlot[f, {x, x0, x1}, {y, y0, y1}, Contours -> {0}, ContourShading -> False, PlotPoints -> points, DisplayFunction -> Identity]], Line[a_] :> a, Infinity]]; roots = (CurveFindRoot[{f, g}, {x, x0, x1}, {y, y0, y1}, #1, points, opts] & ) /@ Range[lengthcontourdata]; {x, y} /. Flatten[DeleteCases[roots, {}], 1]] ContourPlotFunctionRoots[{f_, g_}, {x_, x0_, x1_}, {y_, y0_, y1_}, points_, roots_, optsplot___] := Show[MapThread[ContourPlot[#1, {x, x0, x1}, {y, y0, y1}, optsplot, PlotPoints -> points, Contours -> {0}, ContourShading -> False, DisplayFunction -> Identity, ContourStyle -> {Hue[#2/3]}] & , {{f, g}, {1, 2}}], Graphics[ ({Red, AbsolutePointSize[6], Point[#1]} & ) /@ roots], DisplayFunction -> $DisplayFunction] --------------------------------------------------------------------------------------------------------------------- Here are some applications on finding the roots of a function in a rectangle in the complex domain. Clear[f] f[z_] := Sin[z^3] + Cos[z^2] - z ref[x_, y_] = Simplify[Re[ComplexExpand[f[z] /. z -> x + I*y]], Element[{x,y},Reals]] imf[x_, y_] = Simplify[Im[ComplexExpand[f[z] /. z -> x + I*y]], Element[{x,y},Reals]] -x + Cos[x^2 - y^2]*Cosh[2*x*y] + Cosh[3*x^2*y - y^3]*Sin[x^3 - 3*x*y^2] -y - Sin[x^2 - y^2]*Sinh[2*x*y] + Cos[x^3 - 3*x*y^2]*Sinh[3*x^2*y - y^3] sols = ContourFindRoot[{ref[x, y], imf[x, y]}, {x, -2, 2}, {y, -2, 2}, 100] ContourPlotFunctionRoots[{ref[x, y], imf[x, y]}, {x, -2, 2}, {y, -2, 2}, 100, sols]; Here is another example adopted from a private communication with David Park Clear[f] f[z_] := Sin[Cos[z]] - z ref[x_, y_] = Simplify[Re[ComplexExpand[f[z] /. z -> x + I*y]], Element[{x,y},Reals]] imf[x_, y_] = Simplify[Im[ComplexExpand[f[z] /. z -> x + I*y]], Element[{x,y},Reals]] -x + Cosh[Sin[x]*Sinh[y]]*Sin[Cos[x]*Cosh[y]] -y - Cos[Cos[x]*Cosh[y]]*Sinh[Sin[x]*Sinh[y]] Timing[sols = ContourFindRoot[{ref[x, y], imf[x, y]}, {x, -Pi, Pi}, {y, -Pi, Pi}, 200]] ContourPlotFunctionRoots[{ref[x, y], imf[x, y]}, {x, -Pi, Pi}, {y, -Pi, Pi}, 200, sols]; Timing[sols = ContourFindRoot[{ref[x, y], imf[x, y]}, {x, -Pi, Pi}, {y, Pi, 5*(Pi/3)}, 200]] ContourPlotFunctionRoots[{ref[x, y], imf[x, y]}, { x, -Pi, Pi}, {y, Pi, 5Pi/3}, 200, sols, ImageSize -> {600, 400}]; Here is a system of two equations f[x,y]==0&&g[x,y]==0 f[x_, y_] := Cosh[x + y] + x^2*y^2 - 7*y*x^3 g[x_, y_] := Sinh[x + y] + x*y - 2*x Timing[sols = ContourFindRoot[{f[x, y], g[x, y]}, {x, -10, 10}, {y, -10, 10}, 200]] ContourPlotFunctionRoots[{f[x, y], g[x, y]}, {x, -10, 10}, {y, -10, 10}, 200, sols] I would appreciate a lot any kinds of comments for my code, possible modifications, suggestions for extension to treat more cases etc. I would further appreciate if you experiment with it with functions of your own and write down the results. Best Regards Dimitris