verify the result of indefinite integration
- To: mathgroup at smc.vnet.net
- Subject: [mg71440] verify the result of indefinite integration
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 18 Nov 2006 04:41:10 -0500 (EST)
I try to verify that the result of the following indefinite integration is corect f = ArcCosh[Sec[ArcSinh[x]]]; indef = Integrate[f, x] x*ArcCosh[Sec[ArcSinh[x]]] - (1/2 + I/2)*E^((-1 + I)*ArcSinh[x])*Cot[ArcSinh[x]/2]* ((-I)*E^(2*ArcSinh[x])*Hypergeometric2F1[1/2 - I/2, 1, 3/2 - I/2, -E^(2*I*ArcSinh[x])] + Hypergeometric2F1[1/2 + I/2, 1, 3/2 + I/2, -E^(2*I*ArcSinh[x])])*Sqrt[Tan[ArcSinh[x]/2]^2] Here is one simple attempt der = FullSimplify[D[indef, x]]; rad = Table[Random[Real, {-10, 10}], {10}]; Chop[(der /. x -> #1 & ) /@ rad] Chop[(f /. x -> #1 & ) /@ rad] % == %% True However, the following expression cannot be simplified directly to zero FullSimplify[der - f] -((x*Cot[ArcSinh[x]/2]*Sec[ArcSinh[x]]^2*(-1 + Cos[ArcSinh[x]]*(1 + Sqrt[-1 + Sec[ArcSinh[x]]]*Sqrt[1 + Sec[ArcSinh[x]]]*Sqrt[Tan[ArcSinh[x]/2]^2])))/(Sqrt[1 + x^2]*Sqrt[-1 + Sec[ArcSinh[x]]]*Sqrt[1 + Sec[ArcSinh[x]]])) Only with the following assumption we have the desired simplification FullSimplify[%, Tan[ArcSinh[x]/2]^2 > 0] 0 Any comments? Dimitris