Re: Why does this lead to an answer with complex numbers?
- To: mathgroup at smc.vnet.net
- Subject: [mg71459] Re: Why does this lead to an answer with complex numbers?
- From: Peter Pein <petsie at dordos.net>
- Date: Mon, 20 Nov 2006 02:43:36 -0500 (EST)
- Organization: 1&1 Internet AG
- References: <ejosmm$n3k$1@smc.vnet.net>
aaronfude at gmail.com schrieb: > The expression is > > \!\(FullSimplify[ > Assuming[\[Beta] > 0 && \[Beta] < Pi/2, > Integrate[\(-Log[\@\(1 + x\^2\) - 1/11*x\ ]\), \ x]]]\) > > Thanks! > > Aaron Fude. > Hi Aaron, try a definite integral instead: Assuming[Sqrt[1 + z^2] > z/11, FullSimplify[PiecewiseExpand[ Integrate[-Log[Sqrt[1 + x^2] - (1/11)*x], {x, 0, z}]]]] z + (1/(2*Sqrt[30]))*(11*(ArcTan[2*Sqrt[30]] - ArcTan[(2*Sqrt[30]*z)/11] - ArcTan[2*Sqrt[30]*Sqrt[1 + z^2]])) - z*Log[-(z/11) + Sqrt[1 + z^2]] (PiecewiseExpand simplifies the If[z>0,...,Integrate[...]]) Peter