Re: plot question
- To: mathgroup at smc.vnet.net
- Subject: [mg71558] Re: plot question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 23 Nov 2006 05:41:28 -0500 (EST)
- References: <ejot06$n62$1@smc.vnet.net>
Certainly something like the following is by far better (David Park thanks a lot for your invaluable comunication). f[x_][n_] := Nest[Sin, x, n] Show[(Plot[f[x][#1], {x, 0, 2*Pi}, DisplayFunction -> Identity] & ) /@ Range[10], DisplayFunction -> $DisplayFunction, Epilog -> {{Text[StyleForm["n=10", FontSize -> 15], {Pi/2, 0.35}], Text[ StyleForm[HoldForm[sin(sin(sin(... sin(x)))) , n times], FontWeight \[Rule] Bold, FontSize \[Rule] 16] , {(3*Pi)/2 - 0.1, 1/2 + 0.3}]}, {Text[StyleForm["n=1", FontSize -> 15], {Pi/2, 1.15}]}}, ImageSize -> 700, Frame -> {True, True, False, False}, Axes -> {True, False}, AxesStyle -> {AbsoluteDashing[{2, 4}]}, FrameLabel -> ( StyleForm[#1, FontSize \[Rule] 16] & ) /@ {x, HoldForm[f[x, n]]}, TextStyle -> {FontSize -> 14, FontFamily -> "Times"}, PlotLabel -> StyleForm["Sine Iteration\n", FontSize -> 18, FontWeight -> "Bold"], FrameTicks -> {Range[0, 2*Pi, Pi/2], Range[-1, 1, 1/2]}, PlotRange -> {{-0.001, 2*Pi}, {-1.01, 1.2}}]; Dimitris dimitris wrote: > Hello to all. > > "Less in More"! > > But do the following plot contain enough details for the reader to > understand the "mathematics" and in the same time not discard him with > a lot of useless details (such as many legends, a lot of colors > e.t.c.)? > > f[x_, n_] := Nest[Sin, N[x], n] > > Show[(Plot[f[x, #1], {x, 0, 2*Pi}, PlotStyle -> Hue[#1/11], > DisplayFunction -> Identity] & ) /@ Range[10], > Graphics[{{Hue[1/11], Line[{{Pi + 0.5, 1 - 0.1}, {3*(Pi/2) - 0.5, 1 > - 0.1}}]}, > {Hue[10/11], Line[{{Pi + 0.5, 1/2 - 0.1}, {3*(Pi/2) - 0.5, 1/2 - > 0.1}}]}, {Text["n=10", {3*(Pi/2), 1/2 - 0.1}]}, > {Text["n=1", {3*(Pi/2), 1 - 0.1}]}}], DisplayFunction -> > $DisplayFunction, ImageSize -> 600, > Frame -> {True, True, False, False}, Axes -> {True, False}, > AxesStyle -> {AbsoluteDashing[{2, 4}]}, > FrameLabel -> TraditionalForm /@ {x, > HoldForm[Sin[Sin[Sin["..."*Sin[x]]]]*", n times"]}, > TextStyle -> {FontSize -> 14, FontFamily -> "Times"}, PlotLabel -> > "Sin Iteration\n", > FrameTicks -> {Range[0, 2*Pi, Pi/2], Range[-1, 1, 1/2]}, PlotRange > -> {{-0.001, 2*Pi}, {-1.001, 1}}]; > > g[x_, n_] := Nest[Cos, N[x], n] > > Show[(Plot[g[x, #1], {x, 0, 2*Pi}, PlotStyle -> Hue[#1/11], > DisplayFunction -> Identity] & ) /@ Range[10], > Graphics[{{Hue[10/11], Line[{{Pi, 1 - 0.05}, {3*(Pi/2) - 1, 1 - > 0.05}}]}, > {Hue[1/11], Line[{{Pi, 1/2 - 0.1}, {3*(Pi/2) - 1, 1/2 - 0.1}}]}, > {Text["n=1", {3*(Pi/2) - 0.5, 1/2 - 0.1}]}, > {Text["n=10", {3*(Pi/2) - 0.5, 1 - 0.05}]}}], DisplayFunction -> > $DisplayFunction, ImageSize -> 600, > Frame -> {True, True, False, False}, Axes -> {True, False}, > AxesStyle -> {AbsoluteDashing[{2, 4}]}, > FrameLabel -> TraditionalForm /@ {x, > HoldForm[Cos[Cos[Cos["..."*Cos[x]]]]*", n times"]}, > TextStyle -> {FontSize -> 14, FontFamily -> "Times"}, PlotLabel -> > "Cosine Iteration\n", > FrameTicks -> {Range[0, 2*Pi, Pi/2], Range[-1, 1, 1/2]}, PlotRange > -> {{-0.001, 2*Pi}, {-1.001, 1}}]; > > > Thanks a lot.