Re: sum of integrals over patial intervals != integral
- To: mathgroup at smc.vnet.net
- Subject: [mg71779] Re: sum of integrals over patial intervals != integral
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 29 Nov 2006 02:56:09 -0500 (EST)
- References: <ekh5hc$rn5$1@smc.vnet.net>
Also In[1]:= $Version Out[1]= "4.0 for Microsoft Windows (April 21, 1999)" In[5]:= f[x_] := Log[Sin[x]^2]*Tan[x]; In[20]:= Off[$MaxExtraPrecision::meprec] In[21]:= Integrate[f[x], {x, 0, Pi}] N[%, 40] Out[21]= Pi^2/3 + 1/2*(-3*Log[2]^2 - Log[4]^2 + Log[2 - Sqrt[2]]^2 + Log[16]*Log[2 + Sqrt[2]] - Log[2 + Sqrt[2]]^2 - 4*PolyLog[2, -(1/Sqrt[2])] - 4*PolyLog[2, 1/Sqrt[2]] + 4*PolyLog[2, 1 - 1/Sqrt[2]] - 2*PolyLog[2, 1/4*(2 - Sqrt[2])] - 4*PolyLog[2, 2/(2 + Sqrt[2])] - 2*PolyLog[2, 1/4*(2 + Sqrt[2])]) Out[22]= -9.8933845188332`0.3443*^-92 Regards Dimitris Ï/Ç Bob Hanlon Ýãñáøå: > Works in my version: > > $Version > > 5.2 for Mac OS X (June 20, 2005) > > f[x_]:=Log[Sin[x]^2]Tan[x]; > > Integrate[f[x],{x,0,Pi}] > > 0 > > > Bob Hanlon > > ---- Peter Pein <petsie at dordos.net> wrote: > > Dear group, > > > > I wanted Mathematica to show, that for f[x_]:=Log[Sin[x]^2]Tan[x], > > Integrate[f[x],{x,0,Pi}]==0, because f[x]+f[Pi-x]==0. > > > > Mathematica says Integrate[f[x],{x,0,Pi}] does not converge, but > > Integrate[f[x],{x,0,Pi/2}] and Integrate[f[x],{x,Pi/2,Pi}] evaluate to > > -Pi^2/12 resp. P^2/12 and the sum is zero. The more general integral > > Integrate[f[x],{x,0,z},Assumptions->Pi/2<z<=Pi] evaluates explicitly (?). > > > > What did I do wrong? > > http://people.freenet.de/Peter_Berlin/Mathe/komisch.nb > > > > TIA, > > Peter > >