Re: FoourierTransform of a function defined in sections
- To: mathgroup at smc.vnet.net
- Subject: [mg70234] Re: FoourierTransform of a function defined in sections
- From: dimmechan at yahoo.com
- Date: Sun, 8 Oct 2006 02:04:57 -0400 (EDT)
- References: <eg4soa$ffu$1@smc.vnet.net><eg82ch$n2c$1@smc.vnet.net>
In my previous post I forgot the definition of hh[x].
hh[x_] := Piecewise[{{Sin[x]^2, Abs[x] <= Pi}, {0, x > Pi || x < Pi}}]
So
FourierTransform[hh[x], x, s]
-((2*Sqrt[2/Pi]*Sin[Pi*s])/(-4*s + s^3))
(1/Sqrt[2*Pi])*Integrate[hh[x]*Exp[I*s*x], {x, -Infinity, Infinity}]
-((2*Sqrt[2/Pi]*Sin[Pi*s])/(s*(-4 + s^2)))
N[%] /. s -> 1/2
0.8510768648563898
Chop[(1/Sqrt[2*Pi])*NIntegrate[hh[x]*Exp[I*(1/2)*x], {x, -Infinity,
Infinity}]]
0.8510768648563899
Î?/Î? dimmechan at yahoo.com ÎγÏ?αÏ?ε:
> You could work as follows:
>
> $VersionNumber
> 5.2
>
> FourierTransform[hh[x], x, s]
> -((2*Sqrt[2/Pi]*Sin[Pi*s])/(-4*s + s^3))
>
> or
>
> (1/Sqrt[2*Pi])*Integrate[hh[x]*Exp[I*s*x], {x, -Infinity, Infinity}]
> -((2*Sqrt[2/Pi]*Sin[Pi*s])/(s*(-4 + s^2)))
>
> In either case
>
> N[%] /. s -> 1/2
> 0.8510768648563898
>
> (*check*)
>
> Chop[(1/Sqrt[2*Pi])*NIntegrate[hh[x]*Exp[I*(1/2)*x], {x, -Infinity,
> Infinity}]]
> 0.8510768648563899
>
>
> Cheers