Re: a fault in the Factor[] function for polynomials?
- To: mathgroup at smc.vnet.net
- Subject: [mg70436] Re: [mg70395] a fault in the Factor[] function for polynomials?
- From: Murray Eisenberg <murray at math.umass.edu>
- Date: Mon, 16 Oct 2006 02:35:21 -0400 (EDT)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- References: <200610150419.AAA12686@smc.vnet.net>
- Reply-to: murray at math.umass.edu
Why do you think this is a "fault" in Factor??
Simplify[(1 - 4x^2 + x^4)(1 + 4x^2 + x^4) == (x^4 + 2*Sqrt[3]x^2 - 1)(
x^4 - 2*Sqrt[3]x^2 - 1)]
True
You can even factor additional ways, e.g.:
Factor[1 - 14x^4 + x^8, Extension->Sqrt[3]]
(-2 + Sqrt[3] - x^2)*(2 + Sqrt[3] - x^2)*
(-2 + Sqrt[3] + x^2)*(2 + Sqrt[3] + x^2)
Roger Bagula wrote:
> Expand[(x^4 + 2*Sqrt[3]x^2 - 1)(x^4 - 2*Sqrt[3]x^2 - 1)]
> 1 - 14x^4 + x^8
> Factor[%]
> (1 - 4x^2 + x^4)(1 + 4x^2 + x^4)
>
>
--
Murray Eisenberg murray at math.umass.edu
Mathematics & Statistics Dept.
Lederle Graduate Research Tower phone 413 549-1020 (H)
University of Massachusetts 413 545-2859 (W)
710 North Pleasant Street fax 413 545-1801
Amherst, MA 01003-9305
- References:
- a fault in the Factor[] function for polynomials?
- From: Roger Bagula <rlbagula@sbcglobal.net>
- a fault in the Factor[] function for polynomials?