Re: Re: Demostration
- To: mathgroup at smc.vnet.net
- Subject: [mg70465] Re: [mg70453] Re: [mg70369] Demostration
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 17 Oct 2006 02:58:32 -0400 (EDT)
- Reply-to: hanlonr at cox.net
The second test in Select is unnecessary. This should have been
Select[Flatten[
Table[{{x, -Sqrt[x^3 + 9]}, {x, Sqrt[x^3 + 9]}},
{x, -2, 500}], 1],
IntegerQ[#[[2]]] &]
Bob Hanlon
---- Bob Hanlon <hanlonr at cox.net> wrote:
> Reduce[{y^2==x^3+9}, {x,y},Integers]
>
> (x | y) âË?Ë? Integers && x >= -2 &&
> (y == -Sqrt[x^3 + 9] || y == Sqrt[x^3 + 9])
>
> Select[Flatten[
> Table[{{x,-Sqrt[x^3+9]},{x,Sqrt[x^3+9]}},
> {x,-2,500}],1],
> IntegerQ[#[[2]]]&&#[[2]]^2==#[[1]]^3+9&]
>
> {{-2, -1}, {-2, 1}, {0, -3}, {0, 3}, {3, -6}, {3, 6},
> {6, -15}, {6, 15}, {40, -253}, {40, 253}}
>
> Length[%]
>
> 10
>
>
> Bob Hanlon
>
> ---- Miguel <mibelair at hotmail.com> wrote:
> > How canI to demostrate than the equation y^2=x^3+9 has 10 integer
> > solutions?
> >
>
> --
>
> Bob Hanlon
> hanlonr at cox.net
>
>
--
Bob Hanlon
hanlonr at cox.net