mapping of function revisited
- To: mathgroup at smc.vnet.net
- Subject: [mg69923] mapping of function revisited
- From: dimmechan at yahoo.com
- Date: Wed, 27 Sep 2006 06:05:33 -0400 (EDT)
Searching a little more I found one more alternative
exp1 = x^3 + (1 + z)^2;
MapAt[Sin, exp1, Flatten[(Position[exp1, #1] & ) /@ Cases[exp1, _?(
!NumberQ[#1] & ), {-1}], 1]]
Sin[x]^3 + (1 + Sin[z])^2
Are there any other alternatives? Especially with proper pattern
matching?
Thinking a little harder I consider the following pure function
g = TrueQ[First[ToCharacterCode[ToString[p]]] <
First[ToCharacterCode[ToString[#1]]] <
First[ToCharacterCode[ToString[z]]]] & ;
Then
MapAt[Sin, exp1, Flatten[(Position[exp1, #1] & ) /@ Cases[exp1, _?(
!NumberQ[#1] && g[#1] & ), {-1}], 1]]
(1 + z)^2 + Sin[x]^3
Is it possible to obtain the previous result more compactly?
Thanks