Re: FindInstance what inspite ?
- To: mathgroup at smc.vnet.net
- Subject: [mg83897] Re: [mg83861] FindInstance what inspite ?
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Tue, 4 Dec 2007 04:17:57 -0500 (EST)
- References: <fire9m$roc$1@smc.vnet.net> <200712020914.EAA07009@smc.vnet.net> <200712031039.FAA18775@smc.vnet.net>
On 3 Dec 2007, at 19:39, Artur wrote:
> Who have idea what function uses inspite FindInstance in procedure?
> \!\(FindInstance[Chop[N[Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5
> &, 2] \
> + Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, 3], 500]] == a +
> b\
> Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &,
> 1] + c\ Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 +
> #1\^5 \
> &, 1]^2 + d\
> Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &, 1]^3 + e\
> Root[\(-1\) - 2\ #1 - 2\ #1\^2 - #1\^3 + #1\^5 &,
> 1]^4 && a != 0, {a, b, c, d, e}, Integers]\)
> And anser is empty set {}
> Good answer is {a,b,c,d,e}={-2,-3,-2,-1,2}
> Who know how I can realize that procedure in Mathematica ?
>
> Best wishes
> Artur
>
>
>
First of all your answer is incorrect. You can check it with
Mathematica:
I FullSimplify[
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 2] +
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3] ==
{-2, -3, -2, -1, 2} .
Table[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 - 1 & ,
1]^i, {i, 0, 4}]]
False
The correct answer is {2, 2, 2, 1, -2} or, if you prefer
{-2,-2,-2,-1,2}, whic differs from yours in the second place.
Neither FindInstance not Reduce or any other general algorithm based
on polynomial algebra (or algebraic geometry) will work because they
all work over the real or compelex number fields and you are looking
for integer solutions. But in Mathematica 6 you can find this answer
as follows:
ToNumberField[Root[-1 - 2*#1 - 2*#1^2 - #1^3 +
#1^5 & , 2] +
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3],
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 1]]
AlgebraicNumber[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 -
1 & , 1], {2, 2, 2, 1, -2}]
You can check that is correct:
FullSimplify[
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 2] +
Root[-1 - 2*#1 - 2*#1^2 - #1^3 + #1^5 & , 3] ==
{2, 2, 2, 1, -2} .
Table[Root[#1^5 - #1^3 - 2*#1^2 - 2*#1 - 1 & ,
1]^i, {i, 0, 4}]]
True
Best regards
Andrzej Kozlowski
- References:
- Re: Interpolation in 2 D, bug?
- From: Hugh <h.g.d.goyder@cranfield.ac.uk>
- FindInstance what inspite ?
- From: Artur <grafix@csl.pl>
- Re: Interpolation in 2 D, bug?