Re: Eigensystem consistency
- To: mathgroup at smc.vnet.net
- Subject: [mg84010] Re: Eigensystem consistency
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 6 Dec 2007 07:22:54 -0500 (EST)
- Organization: Uni Leipzig
- References: <fj8b16$au2$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi,
because a symbolic eigenvalue/eigensystem solver
is different from a numeric one.
Regards
Jens
Arturas Acus wrote:
> Dear group,
>
> why these two calculations give different rezults?
>
>
>
> In[1]:= N[
> Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\[Rho] \
> \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /. {\[Sigma]1 -> 1, \[Sigma]2 ->
> 3, \[Rho] -> 98/100}]]
>
> Out[1]= {{9.96423, 0.0357679}, {{0.32797, 1.}, {-3.04906, 1.}}}
>
>
>
> and
>
> In[2]:= Eigensystem[{{\[Sigma]1^2, \[Rho] \[Sigma]1 \[Sigma]2}, {\
> \[Rho] \[Sigma]1 \[Sigma]2, \[Sigma]2^2}} /.
> N[{\[Sigma]1 -> 1, \[Sigma]2 -> 3, \[Rho] -> 98/100}]]
>
> Out[2]= {{9.96423,
> 0.0357679}, {{0.311638, 0.950201}, {0.950201, -0.311638}}}
>
>
>
>
>
>