curious results form Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg73730] curious results form Integrate
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 27 Feb 2007 05:39:42 -0500 (EST)
Hello to all.
$Version
"5.2 for Microsoft Windows (June 20, 2005)"
Integrate[Sin[x + x0]/(x + x0), {x, -Infinity, Infinity}]
Pi
(*correct regrardless x0; there is an integrable singularity at x=-
x0*)
Limit[Sin[x + x0]/(x + x0), x -> -x0]
1
Integrate[Sin[x + x0]/(x + x0), {x, -Infinity, x0, Infinity}]
Expand[%]
Pi/2 + (1/2)*(Pi - 2*SinIntegral[2*x0]) + SinIntegral[2*x0]
Pi
(NIntegrate[Sin[x + #1]/(x + #1), {x, -Infinity, Infinity}, Method ->
Oscillatory] & ) /@ Range[-3, 3]
{3.14159,3.14159,3.14159,3.14159,3.14159,3.14159,3.14159}
HOWEVER
Integrate[Sin[x + d]/(x + d), {x, -Infinity, 0}]
Integrate[Sin[x + d]/(x + d), {x, 0, Infinity}]
If[Im[d] != 0 || Re[d] <= 0, Pi/2 + SinIntegral[d], Integrate[Sin[d -
x]/(d - x), {x, 0, Infinity}, Assumptions -> d > 0]]
If[Im[d] != 0 || Re[d] >= 0, (1/2)*(Pi - 2*SinIntegral[d]),
Integrate[Sin[d + x]/(d + x), {x, 0, Infinity},
Assumptions -> d < 0]]
I don't understand the presence of the If's statements.
Note also that some of the integrals below stay unevaluated!
(Integrate[Sin[x + #1]/(x + #1), {x, -Infinity, Infinity}] & ) /@
Range[-3, 3]
(Integrate[Sin[x + #1]/(x + #1), {x, -Infinity, 0}] & ) /@ Range[-3,
3]
(Integrate[Sin[x + #1]/(x + #1), {x, 0, Infinity}] & ) /@ Range[-3, 3]
{Integrate[-(Sin[3 - x]/(-3 + x)), {x, -Infinity, Infinity}],
Integrate[-(Sin[2 - x]/(-2 + x)), {x, -Infinity, Infinity}],
Integrate[-(Sin[1 - x]/(-1 + x)), {x, -Infinity, Infinity}], Pi,
Integrate[Sin[1 + x]/(1 + x), {x, -Infinity, Infinity}],
Integrate[Sin[2 + x]/(2 + x), {x, -Infinity, Infinity}],
Integrate[Sin[3 + x]/(3 + x), {x, -Infinity, Infinity}]}
{(1/2)*(Pi - 2*SinIntegral[3]), (1/2)*(Pi - 2*SinIntegral[2]),
(1/2)*(Pi - 2*SinIntegral[1]), Pi/2,
Integrate[Sin[1 + x]/(1 + x), {x, -Infinity, 0}], Integrate[Sin[2 +
x]/(2 + x), {x, -Infinity, 0}],
Integrate[Sin[3 + x]/(3 + x), {x, -Infinity, 0}]}
{Integrate[-(Sin[3 - x]/(-3 + x)), {x, 0, Infinity}], Integrate[-
(Sin[2 - x]/(-2 + x)), {x, 0, Infinity}],
Integrate[-(Sin[1 - x]/(-1 + x)), {x, 0, Infinity}], Pi/2, (1/2)*(Pi
- 2*SinIntegral[1]), (1/2)*(Pi - 2*SinIntegral[2]),
(1/2)*(Pi - 2*SinIntegral[3])}
Of course NIntegrate works correctly:
(NIntegrate[Sin[x + #1]/(x + #1), {x, -Infinity, 0}, Method ->
Oscillatory] & ) /@ Range[-3, 3]
(NIntegrate[Sin[x + #1]/(x + #1), {x, 0, Infinity}, Method ->
Oscillatory] & ) /@ Range[-3, 3]
% + %%
{-0.277856,-0.0346167,0.624713,1.5708,2.51688,3.17621,3.41945}
{3.41945,3.17621,2.51688,1.5708,0.624713,-0.0346167,-0.277856}
{3.14159,3.14159,3.14159,3.14159,3.14159,3.14159,3.14159}