how to simplify n write in mathtype
- To: mathgroup at smc.vnet.net
- Subject: [mg78881] how to simplify n write in mathtype
- From: bhargavi <bhargavi.math at gmail.com>
- Date: Thu, 12 Jul 2007 05:10:26 -0400 (EDT)
hi,tx for ur suggestion i m doing the same thing which you suggested
that is Selected the cells, as Ctrl+Shift+I (simultanesouly) n
coped as a plain text, nowplz
suggest me how to convert this expression into mathtype.its very huge
one.i can't make up the begning and ending of the brackets.n can we
convert mathematica note book into pdf file? is this expression is ok?
if not plz suggest me.
bhargvi.
so my expression is,
\[Lambda]/(Subscript[\[Sigma], 1] -
(-420*Da*((240*Da^(7/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^3*
(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Epsilon]*\
[Eta] + (-1 + \[Gamma])^5*\[Gamma]*
(-2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])
+
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*\[Gamma]*(-1 + \
[Beta]*Sqrt[\[Epsilon]]) -
\[Gamma]*(1 + \[Beta]*Sqrt[\[Epsilon]]))*(-1 + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\
[Epsilon]])*\[Epsilon]^(3/2)*\[Eta] -
96*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^2*Sqrt[\[Epsilon]]*
((3 + 4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + 3*E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*(-1 + \[Gamma])*\[Eta] -
5*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\
[Beta]*(-1 + \[Gamma])*Sqrt[\[Epsilon]]*
\[Eta] + \[Epsilon]*(-1 + \[Gamma] + \[Gamma]*\[Eta] +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + \[Gamma] + \[Gamma]*\[Eta]) + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(2 + \[Gamma]*(-2 + 3*\[Eta])))) + 2*Da^(3/2)*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])*\[Epsilon]*
(14 - 18*\[Gamma] - 6*\[Gamma]^2 + 10*\[Gamma]^3 + 28*\
[Beta]*Sqrt[\[Epsilon]] -
12*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] - 60*\[Beta]*\
[Gamma]^2*Sqrt[\[Epsilon]] +
44*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 20*\
[Gamma]*\[Epsilon] + 48*\[Beta]^2*\[Gamma]*\[Epsilon] +
10*\[Gamma]^2*\[Epsilon] - 96*\[Beta]^2*\[Gamma]^2*\
[Epsilon] + 8*\[Gamma]^3*\[Epsilon] +
48*\[Beta]^2*\[Gamma]^3*\[Epsilon] - 24*\[Beta]*\[Gamma]^2*\
[Epsilon]^(3/2) +
24*\[Beta]*\[Gamma]^3*\[Epsilon]^(3/2) + 7*\[Eta] - 51*\
[Gamma]*\[Eta] + 87*\[Gamma]^2*\[Eta] -
43*\[Gamma]^3*\[Eta] - 30*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]]*
\[Eta] + 66*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]]*
\[Eta] - 36*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]]*\[Eta] - 4*
\[Gamma]*\[Epsilon]*\[Eta] +
14*\[Gamma]^2*\[Epsilon]*\[Eta] - 14*\[Gamma]^3*\[Epsilon]*\
[Eta] - 4*\[Beta]*\[Gamma]^3*\[Epsilon]^(3/2)*\[Eta] +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-14 + 84*\
[Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] +
11*\[Eta] + \[Gamma]^2*(-90 + 96*\[Beta]^2*\[Epsilon] + 6*
\[Beta]*Sqrt[\[Epsilon]]*
(34 + 4*\[Epsilon] - 11*\[Eta]) + 171*\[Eta] - 2*\
[Epsilon]*(29 + \[Eta])) +
\[Gamma]*(66 - 48*\[Beta]^2*\[Epsilon] - 99*\[Eta] + 4*\
[Epsilon]*(5 + \[Eta]) + 6*\[Beta]*
Sqrt[\[Epsilon]]*(-38 + 5*\[Eta])) + \[Gamma]^3*(38 -
48*\[Beta]^2*\[Epsilon] + \[Epsilon]*
(40 - 6*\[Eta]) - 83*\[Eta] + 4*\[Beta]*Sqrt[\
[Epsilon]]*(-15 +
\[Epsilon]*(-6 + \[Eta]) + 9*\[Eta]))) - E^((\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(14 + 84*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 11*\
[Eta] +
\[Gamma]^2*(90 - 96*\[Beta]^2*\[Epsilon] + 6*\
[Beta]*Sqrt[\[Epsilon]]*(34 + 4*\[Epsilon] -
11*\[Eta]) - 171*\[Eta] + 2*\[Epsilon]*(29 + \[Eta]))
+
\[Gamma]*(-66 + 48*\[Beta]^2*\[Epsilon] + 99*\[Eta] - 4*\
[Epsilon]*(5 + \[Eta]) + 6*\[Beta]*
Sqrt[\[Epsilon]]*(-38 + 5*\[Eta])) + \[Gamma]^3*(-38 +
48*\[Beta]^2*\[Epsilon] + 83*
\[Eta] + \[Epsilon]*(-40 + 6*\[Eta]) + 4*\[Beta]*Sqrt[\
[Epsilon]]*(-15 +
\[Epsilon]*(-6 + \[Eta]) + 9*\[Eta]))) + E^((3*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(14 - 28*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] + 7*\
[Eta] + \[Gamma]*(-18 + 48*\[Beta]^2*
\[Epsilon] - 51*\[Eta] - 4*\[Epsilon]*(5 + \[Eta]) + 6*
\[Beta]*Sqrt[\[Epsilon]]*
(2 + 5*\[Eta])) + \[Gamma]^2*(-6 - 96*\[Beta]^2*\
[Epsilon] + 6*\[Beta]*Sqrt[\[Epsilon]]*
(10 + 4*\[Epsilon] - 11*\[Eta]) + 87*\[Eta] + 2*\
[Epsilon]*(5 + 7*\[Eta])) +
\[Gamma]^3*(10 + 48*\[Beta]^2*\[Epsilon] + \[Epsilon]*(8
- 14*\[Eta]) - 43*\[Eta] + 4*\[Beta]*
Sqrt[\[Epsilon]]*(-11 + \[Epsilon]*(-6 + \[Eta]) + 9*\
[Eta])))) +
2*Da*(-1 + \[Gamma])^2*Sqrt[\[Epsilon]]*((-1 + E^((\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*
(1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])^3*\[Eta] -
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^3*
(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Beta]*(-1
+ \[Gamma])^3*Sqrt[\[Epsilon]]*
\[Eta] + (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^2*\[Gamma]*\[Epsilon]^2*
(1 + 2*\[Gamma]*(-1 + 6*\[Beta]^2 - \[Eta]) + \
[Gamma]^2*(1 + 2*\[Beta]^2*(-6 + \[Eta]) +
2*\[Eta])) - (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*\[Beta]*\[Epsilon]^(3/2)*
(-2 + 20*\[Gamma] - 10*\[Gamma]^2 - 8*\[Gamma]^3 + 5*\
[Gamma]*\[Eta] - 16*\[Gamma]^2*\[Eta] +
15*\[Gamma]^3*\[Eta] - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*(-1 + \[Gamma])^2*
(-2 + \[Gamma]*(16 + 5*\[Eta])) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(-2 + 5*\[Gamma]*(4 + \[Eta]) - 2*\[Gamma]^2*(5 + 8*\
[Eta]) + \[Gamma]^3*
(-8 + 15*\[Eta]))) + \[Epsilon]*(3 + 5*\[Gamma] - 7*\
[Gamma]^2 - \[Gamma]^3 - 2*\[Eta] +
11*\[Gamma]*\[Eta] - 22*\[Gamma]^2*\[Eta] + 15*\[Gamma]^3*
\[Eta] +
2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])^2*(-8 + \[Gamma]*
(-6 + 5*\[Eta])) + 2*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*(-1 + \[Gamma])^2*
(-8 + \[Gamma]*(-6 + 5*\[Eta])) + 2*E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(13 + \[Gamma]^2*(23 - 6*\[Eta]) + 2*\[Eta] - \
[Gamma]*(25 + 3*\[Eta]) + \[Gamma]^3*
(-11 + 9*\[Eta])) + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(3 - 2*\[Eta] + \[Gamma]*(5 + 11*\[Eta]) + \
[Gamma]^3*(-1 + 15*\[Eta]) - \[Gamma]^2*
(7 + 22*\[Eta])))) + 48*Da^(5/2)*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])*
(2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*
(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Gamma]*\
[Epsilon]^2 +
(1 + 4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + 4*E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*(-1 + \[Gamma])*\[Eta] -
2*(-3 - E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[
Da]) + 3*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\
[Beta]*(-1 + \[Gamma])*
Sqrt[\[Epsilon]]*\[Eta] - 4*(-1 + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da]))*\[Beta]*
\[Epsilon]^(3/2)*(-1 + \[Gamma] + \[Gamma]*\[Eta] + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + \[Gamma] + \[Gamma]*\[Eta]) + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(2 + \[Gamma]*(-2 + 3*\[Eta]))) + (1 + E^((\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*
\[Epsilon]*(-2 + 2*\[Gamma] + 2*\[Eta] - 5*\[Beta]^2*\
[Eta] + 5*\[Beta]^2*\[Gamma]*\[Eta] +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-2 + (2 - 5*\
[Beta]^2)*\[Eta] + \[Gamma]*
(2 + 5*\[Beta]^2*\[Eta])) - 2*E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(-2 + (2 - 5*\[Beta]^2)*\[Eta] + \[Gamma]*(2 + 5*(-1 + \
[Beta]^2)*\[Eta])))) +
Sqrt[Da]*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1
+ \[Gamma])^4*\[Epsilon]*
((-(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])))*
(1 - 4*\[Gamma] + 3*\[Gamma]^2)*\[Eta] + (-1 + E^((\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*
\[Beta]*(-1 + \[Gamma])*(-1 + 5*\[Gamma] + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + 5*\[Gamma]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*(-2 + 6*\[Gamma]))*
Sqrt[\[Epsilon]]*\[Eta] + (-1 + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da]))*
(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*\[Beta]*\
[Gamma]*\[Epsilon]^(3/2)*
(-2 + \[Gamma]*(2 + 5*\[Eta])) - (1 + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da]))*\[Epsilon]*
(-1 + \[Gamma]^2 - 2*\[Beta]^2*\[Gamma]*\[Eta] + 5*\
[Gamma]^2*\[Eta] + 2*\[Beta]^2*\[Gamma]^2*\[Eta] -
2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])*(1 + \[Gamma]*
(-1 + 2*(-2 + \[Beta]^2)*\[Eta])) + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 - 2*\[Beta]^2*\[Gamma]*\[Eta] + \[Gamma]^2*(1 + (5 +
2*\[Beta]^2)*\[Eta])))) +
4*Da^2*Sqrt[\[Epsilon]]*(6 - 18*\[Gamma] + 18*\[Gamma]^2 - 6*\
[Gamma]^3 +
24*\[Beta]*Sqrt[\[Epsilon]] - 72*\[Beta]*\[Gamma]*Sqrt[\
[Epsilon]] + 72*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] -
24*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]] - 14*\[Epsilon] + 24*
\[Beta]^2*\[Epsilon] + 6*\[Gamma]*\[Epsilon] -
72*\[Beta]^2*\[Gamma]*\[Epsilon] + 30*\[Gamma]^2*\[Epsilon]
+ 72*\[Beta]^2*\[Gamma]^2*\[Epsilon] -
22*\[Gamma]^3*\[Epsilon] - 24*\[Beta]^2*\[Gamma]^3*\
[Epsilon] - 48*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) +
96*\[Beta]*\[Gamma]^2*\[Epsilon]^(3/2) - 48*\[Beta]*\
[Gamma]^3*\[Epsilon]^(3/2) + 6*\[Gamma]^2*\[Epsilon]^2 -
6*\[Gamma]^3*\[Epsilon]^2 - 27*\[Eta] + 81*\[Gamma]*\[Eta]
- 81*\[Gamma]^2*\[Eta] +
27*\[Gamma]^3*\[Eta] - 24*\[Beta]*Sqrt[\[Epsilon]]*\[Eta] +
48*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]]*\[Eta] -
24*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]]*\[Eta] + 15*\[Gamma]*
\[Epsilon]*\[Eta] - 24*\[Beta]^2*\[Gamma]*\[Epsilon]*
\[Eta] - 33*\[Gamma]^2*\[Epsilon]*\[Eta] + 48*\[Beta]^2*\
[Gamma]^2*\[Epsilon]*\[Eta] +
18*\[Gamma]^3*\[Epsilon]*\[Eta] - 24*\[Beta]^2*\[Gamma]^3*\
[Epsilon]*\[Eta] + \[Gamma]^3*\[Epsilon]^2*\[Eta] +
4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])^2*(-2*(-7 + \[Gamma])*\[Epsilon] -
6*\[Beta]^2*\[Epsilon]*(4 + \[Gamma]*(-4 + \[Eta])) + 6*\
[Beta]*Sqrt[\[Epsilon]]*
(\[Gamma]*(2 + 4*\[Epsilon] - 5*\[Eta]) + 2*(-1 + \
[Eta])) + 3*(2 - 5*\[Gamma])*\[Eta]) -
4*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])^2*(2*(-7 + \[Gamma])*\[Epsilon] +
6*\[Beta]^2*\[Epsilon]*(4 + \[Gamma]*(-4 + \[Eta])) + 6*\
[Beta]*Sqrt[\[Epsilon]]*
(\[Gamma]*(2 + 4*\[Epsilon] - 5*\[Eta]) + 2*(-1 + \
[Eta])) + 3*(-2 + 5*\[Gamma])*
\[Eta]) + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(6
- 14*\[Epsilon] +
24*\[Beta]^2*\[Epsilon] + 24*\[Beta]*Sqrt[\[Epsilon]]*(-1
+ \[Eta]) - 27*\[Eta] +
3*\[Gamma]^2*(6 + 2*\[Epsilon]^2 + \[Epsilon]*(10 - 11*\
[Eta]) - 8*\[Beta]*Sqrt[\[Epsilon]]*
(3 + 4*\[Epsilon] - \[Eta]) - 27*\[Eta] + 8*\[Beta]^2*\
[Epsilon]*(3 + 2*\[Eta])) -
3*\[Gamma]*(6 - 8*\[Beta]*Sqrt[\[Epsilon]]*(3 + 2*\
[Epsilon] - 2*\[Eta]) - 27*\[Eta] + 8*
\[Beta]^2*\[Epsilon]*(3 + \[Eta]) - \[Epsilon]*(2 + 5*\
[Eta])) +
\[Gamma]^3*(-6 + 24*\[Beta]*Sqrt[\[Epsilon]]*(1 + 2*\
[Epsilon]) + \[Epsilon]^2*(-6 + \[Eta]) + 27*
\[Eta] - 24*\[Beta]^2*\[Epsilon]*(1 + \[Eta]) + 2*\
[Epsilon]*(-11 + 9*\[Eta]))) -
2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(6 + (42 - 72*\
[Beta]^2)*\[Epsilon] -
3*\[Eta] - 3*\[Gamma]*(6 - 11*\[Eta] + \[Epsilon]*(38 - 5*
\[Eta] + 8*\[Beta]^2*
(-9 + 2*\[Eta]))) + \[Gamma]^3*(-6 + \
[Epsilon]^2*(-6 + \[Eta]) + 27*\[Eta] - 6*
\[Epsilon]*(5 - 3*\[Eta] + 4*\[Beta]^2*(-3 + 2*\
[Eta]))) +
3*\[Gamma]^2*(6 + 2*\[Epsilon]^2 - 19*\[Eta] + \
[Epsilon]*(34 - 11*\[Eta] + 8*\[Beta]^2*
(-9 + 4*\[Eta]))))))*\[Lambda] - 2*Sqrt[\[Epsilon]]*
(96*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^4*\
[Epsilon] -
(-1 + \[Gamma])^5*(-1 - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*(-1 + \[Gamma]) +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma]*(-1 + 2*\[Beta]*Sqrt[\[Epsilon]])) -
\[Gamma]*(1 + 2*\[Beta]*Sqrt[\[Epsilon]]))*(-1 + E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\
[Epsilon]])*\[Epsilon] -
96*Da^(5/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^3*Sqrt[\[Epsilon]]*
(-1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 + 2*\
[Beta]*Sqrt[\[Epsilon]] + \[Epsilon]) +
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + 2*\
[Beta]*Sqrt[\[Epsilon]] +
\[Gamma]*(1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Epsilon])))
+ 4*Da*(-1 + \[Gamma])^2*\[Epsilon]*
(9*\[Gamma] - 3*\[Gamma]^2 + 2*E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])*
(5 + 2*\[Gamma]*(2 + 7*\[Beta]*Sqrt[\[Epsilon]]) - 5*\
[Beta]*Sqrt[\[Epsilon]]) -
2*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])*(-5 - 4*\[Gamma] -
5*\[Beta]*Sqrt[\[Epsilon]] + 14*\[Beta]*\[Gamma]*Sqrt[\
[Epsilon]]) - 5*\[Beta]*Sqrt[\[Epsilon]] +
19*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] - 2*\[Beta]*\
[Gamma]^2*Sqrt[\[Epsilon]] + 2*\[Gamma]*\[Epsilon] -
2*\[Gamma]^2*\[Epsilon] + 6*\[Beta]^2*\[Gamma]^2*\[Epsilon]
+ E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(5*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(9 - 19*\
[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]) +
\[Gamma]^2*(-3 + 2*\[Beta]*Sqrt[\[Epsilon]] - 2*\
[Epsilon] + 6*\[Beta]^2*\[Epsilon])) -
2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-10 + \
[Gamma]*(11 + 2*\[Epsilon]) +
\[Gamma]^2*(-7 + (-2 + 6*\[Beta]^2)*\[Epsilon]))) +
24*Da^2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*(1
- 2*\[Gamma] + \[Gamma]^2 +
4*\[Beta]*Sqrt[\[Epsilon]] - 8*\[Beta]*\[Gamma]*Sqrt[\
[Epsilon]] + 4*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] -
3*\[Epsilon] + 4*\[Beta]^2*\[Epsilon] - 8*\[Beta]^2*\
[Gamma]*\[Epsilon] + 3*\[Gamma]^2*\[Epsilon] +
4*\[Beta]^2*\[Gamma]^2*\[Epsilon] - 8*\[Beta]*\[Gamma]*\
[Epsilon]^(3/2) + 8*\[Beta]*\[Gamma]^2*\[Epsilon]^(3/2) +
\[Gamma]^2*\[Epsilon]^2 + 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(1 + (3 - 4*\[Beta]^2)*\[Epsilon] + \[Gamma]*(-2 + 8*(-1 +
\[Beta]^2)*\[Epsilon]) +
\[Gamma]^2*(1 + (5 - 4*\[Beta]^2)*\[Epsilon] + \
[Epsilon]^2)) +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 4*\
[Beta]*Sqrt[\[Epsilon]] - 3*\[Epsilon] +
4*\[Beta]^2*\[Epsilon] + \[Gamma]*(-2 - 8*\[Beta]^2*\
[Epsilon] + 8*\[Beta]*Sqrt[\[Epsilon]]*
(1 + \[Epsilon])) + \[Gamma]^2*(1 + 3*\[Epsilon] + 4*\
[Beta]^2*\[Epsilon] + \[Epsilon]^2 - 4*\[Beta]*
Sqrt[\[Epsilon]]*(1 + 2*\[Epsilon])))) + 4*Da^(3/2)*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])*Sqrt[\[Epsilon]]*
(9 - 6*\[Gamma] - 3*\[Gamma]^2 + 18*\[Beta]*Sqrt[\[Epsilon]]
- 18*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] +
4*\[Epsilon] - 17*\[Gamma]*\[Epsilon] + 24*\[Beta]^2*\
[Gamma]*\[Epsilon] + \[Gamma]^2*\[Epsilon] -
24*\[Beta]^2*\[Gamma]^2*\[Epsilon] - 12*\[Beta]*\[Gamma]^2*\
[Epsilon]^(3/2) +
E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 - 18*\
[Beta]*Sqrt[\[Epsilon]] + 4*\[Epsilon] +
\[Gamma]*(-6 + (-17 + 24*\[Beta]^2)*\[Epsilon]) + \
[Gamma]^2*(-3 + \[Epsilon] - 24*\[Beta]^2*
\[Epsilon] + 6*\[Beta]*Sqrt[\[Epsilon]]*(3 + 2*\
[Epsilon]))) -
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 + 54*\
[Beta]*Sqrt[\[Epsilon]] + 4*\[Epsilon] +
\[Gamma]*(-30 - 96*\[Beta]*Sqrt[\[Epsilon]] - 17*\
[Epsilon] + 24*\[Beta]^2*\[Epsilon]) +
\[Gamma]^2*(21 + 25*\[Epsilon] - 24*\[Beta]^2*\[Epsilon]
+ 6*\[Beta]*Sqrt[\[Epsilon]]*
(7 + 2*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(-9 + 54*\[Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] + \
[Gamma]*(30 - 96*\[Beta]*Sqrt[\[Epsilon]] + 17*
\[Epsilon] - 24*\[Beta]^2*\[Epsilon]) + \
[Gamma]^2*(-21 - 25*\[Epsilon] + 24*\[Beta]^2*\[Epsilon] + 6*
\[Beta]*Sqrt[\[Epsilon]]*(7 + 2*\[Epsilon])))) -
2*Sqrt[Da]*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])^4*Sqrt[\[Epsilon]]*
(1 - \[Gamma] + 3*\[Beta]*Sqrt[\[Epsilon]] - 3*\[Beta]*\
[Gamma]*Sqrt[\[Epsilon]] - 2*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] - 3*\[Gamma]*\[Epsilon] - 2*\
[Beta]^2*\[Gamma]*\[Epsilon] - 5*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) -
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] + \[Gamma]*(1 + 7*\[Epsilon] - 2*\
[Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]*
(-1 + 5*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(1 + \[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 2*\[Beta]^2*
\[Epsilon] +
\[Gamma]*(-1 - 7*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \
[Beta]*Sqrt[\[Epsilon]]*(-1 + 5*\[Epsilon]))) +
E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 3*\
[Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] + \[Gamma]*(-1 - 3*\[Epsilon] - 2*\
[Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]*
(3 + 5*\[Epsilon])))))*Subscript[\[Sigma], 1]) +
(-1 + \[Gamma])^2*\[Epsilon]*
((1 - \[Gamma])*(6720*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^4*Sqrt[\[Epsilon]] -
17*(-1 + \[Gamma])^6*(1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(1 - \[Beta]*Sqrt[\[Epsilon]]) + \[Beta]*Sqrt[\
[Epsilon]])^2*Sqrt[\[Epsilon]] -
153*Sqrt[Da]*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*(-1 + \[Gamma])^5*
(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Beta]*Sqrt[\[Epsilon]]) -
\[Beta]*Sqrt[\[Epsilon]])*\[Epsilon] - 840*Da^(5/2)*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^3*(-4 - 8*\
[Beta]*Sqrt[\[Epsilon]] -
5*\[Epsilon] + \[Gamma]*(4 + 8*\[Beta]*Sqrt[\[Epsilon]] + 9*
\[Epsilon]) +
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-4 + 8*\
[Beta]*Sqrt[\[Epsilon]] - 5*\[Epsilon] +
\[Gamma]*(4 - 8*\[Beta]*Sqrt[\[Epsilon]] + 9*\
[Epsilon]))) +
84*Da^2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*(-1
+ \[Gamma])*Sqrt[\[Epsilon]]*
(-3 - 60*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(43 + 100*\
[Beta]*Sqrt[\[Epsilon]] + 25*\[Epsilon]) +
2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-57 + \
[Gamma]*(57 + 25*\[Epsilon])) +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-3 + 60*\
[Beta]*Sqrt[\[Epsilon]] +
\[Gamma]*(43 - 100*\[Beta]*Sqrt[\[Epsilon]] + 25*\
[Epsilon]))) + 4*Da*(-1 + \[Gamma])^3*
Sqrt[\[Epsilon]]*(112 - 7*\[Gamma] - 224*E^((3*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-1 + \[Gamma])*(-1 + \[Beta]*Sqrt[\[Epsilon]]) +
224*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Gamma])*(1 + \[Beta]*Sqrt[\[Epsilon]]) +
112*\[Beta]*Sqrt[\[Epsilon]] + 98*\[Beta]*\[Gamma]*Sqrt[\
[Epsilon]] + 97*\[Epsilon] - 97*\[Gamma]*\[Epsilon] +
105*\[Beta]^2*\[Gamma]*\[Epsilon] + E^((4*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(112 - 112*\[Beta]*Sqrt[\[Epsilon]] + 97*\[Epsilon] + \
[Gamma]*(-7 - 98*\[Beta]*Sqrt[\[Epsilon]] -
97*\[Epsilon] + 105*\[Beta]^2*\[Epsilon])) - 2*E^((2*\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-112 + 97*\[Epsilon] + \[Gamma]*(7 + (-97 + 105*\
[Beta]^2)*\[Epsilon]))) +
28*Da^(3/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*(-1 + \[Gamma])^2*
(15 - 15*\[Gamma] + 45*\[Beta]*Sqrt[\[Epsilon]] - 45*\[Beta]*
\[Gamma]*Sqrt[\[Epsilon]] - 82*\[Epsilon] +
30*\[Beta]^2*\[Epsilon] - 8*\[Gamma]*\[Epsilon] - 30*\
[Beta]^2*\[Gamma]*\[Epsilon] -
90*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(15 - 15*\[Beta]*Sqrt[\[Epsilon]] + 82*\[Epsilon] - 30*\
[Beta]^2*\[Epsilon] +
\[Gamma]*(-15 + 15*\[Beta]*(1 - 6*\[Epsilon])*Sqrt[\
[Epsilon]] - 172*\[Epsilon] + 30*\[Beta]^2*
\[Epsilon])) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(15 - 45*\[Beta]*Sqrt[\[Epsilon]] - 82*\[Epsilon] + 30*\
[Beta]^2*\[Epsilon] +
\[Gamma]*(-15 - 8*\[Epsilon] - 30*\[Beta]^2*\[Epsilon] +
45*\[Beta]*Sqrt[\[Epsilon]]*
(1 + 2*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(15 + 15*\[Beta]*Sqrt[\[Epsilon]] + 82*\[Epsilon] - 30*\
[Beta]^2*\[Epsilon] +
\[Gamma]*(-15 - 172*\[Epsilon] + 30*\[Beta]^2*\[Epsilon]
+ 15*\[Beta]*Sqrt[\[Epsilon]]*
(-1 + 6*\[Epsilon])))))*\[Lambda] -
140*(144*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^4*Sqrt[\[Epsilon]] -
(-1 + \[Gamma])^6*(1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(1 - \[Beta]*Sqrt[\[Epsilon]]) + \[Beta]*Sqrt[\
[Epsilon]])^2*Sqrt[\[Epsilon]] -
8*Sqrt[Da]*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))*(-1 + \[Gamma])^5*
(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Beta]*Sqrt[\[Epsilon]]) -
\[Beta]*Sqrt[\[Epsilon]])*\[Epsilon] + 24*Da^2*(-1 + E^((\
[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*
(-1 + \[Gamma])*Sqrt[\[Epsilon]]*(-5*\[Beta]*Sqrt[\
[Epsilon]] +
\[Gamma]*(3 + 8*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]) +
2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*
(-5 + \[Gamma]*(5 + 2*\[Epsilon])) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(5*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(3 - 8*\
[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]))) -
24*Da^(5/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da]))^3*
(-3 - 6*\[Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] + \
[Gamma]*(3 + 6*\[Beta]*Sqrt[\[Epsilon]] + 7*\[Epsilon]) +
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-3 + 6*\
[Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] +
\[Gamma]*(3 - 6*\[Beta]*Sqrt[\[Epsilon]] + 7*\
[Epsilon]))) + 2*Da*(-1 + \[Gamma])^3*
Sqrt[\[Epsilon]]*(9 - 3*\[Gamma] - 18*E^((3*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])*
(-1 + \[Beta]*Sqrt[\[Epsilon]]) + 18*E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])*
(1 + \[Beta]*Sqrt[\[Epsilon]]) + 9*\[Beta]*Sqrt[\
[Epsilon]] + 3*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] +
8*\[Epsilon] - 8*\[Gamma]*\[Epsilon] + 6*\[Beta]^2*\[Gamma]*
\[Epsilon] +
E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 - 9*\
[Beta]*Sqrt[\[Epsilon]] + 8*\[Epsilon] +
\[Gamma]*(-3 - 3*\[Beta]*Sqrt[\[Epsilon]] - 8*\[Epsilon]
+ 6*\[Beta]^2*\[Epsilon])) -
2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-9 + 8*\
[Epsilon] +
\[Gamma]*(3 + (-8 + 6*\[Beta]^2)*\[Epsilon]))) +
12*Da^(3/2)*
(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])^2*
(1 - \[Gamma] + 3*\[Beta]*Sqrt[\[Epsilon]] - 3*\[Beta]*\
[Gamma]*Sqrt[\[Epsilon]] - 6*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] + \[Gamma]*\[Epsilon] - 2*\[Beta]^2*\
[Gamma]*\[Epsilon] - 5*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) -
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \
[Beta]*Sqrt[\[Epsilon]] - 6*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] + \[Gamma]*(1 + 11*\[Epsilon] - 2*\
[Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]*
(-1 + 5*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da])*
(1 + \[Beta]*Sqrt[\[Epsilon]] + 6*\[Epsilon] - 2*\[Beta]^2*
\[Epsilon] +
\[Gamma]*(-1 - 11*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \
[Beta]*Sqrt[\[Epsilon]]*(-1 + 5*\[Epsilon]))) +
E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 3*\
[Beta]*Sqrt[\[Epsilon]] - 6*\[Epsilon] +
2*\[Beta]^2*\[Epsilon] + \[Gamma]*(-1 + \[Epsilon] - 2*\
[Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]*
(3 + 5*\[Epsilon])))))*Subscript[\[Sigma], 1]))/
(140*Sqrt[\[Epsilon]]*(24*Da^2*(-1 + E^((\[Gamma]*Sqrt[\
[Epsilon]])/Sqrt[Da]))^2*Sqrt[\[Epsilon]] +
(-1 + \[Gamma])^4*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*
(-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\
[Epsilon]])*Sqrt[\[Epsilon]] -
12*Da*(-1 + \[Gamma])*(-1 - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/
Sqrt[Da])*(-1 + \[Gamma]) +
E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \[Beta]*\
[Gamma]*Sqrt[\[Epsilon]]) -
\[Beta]*\[Gamma]*Sqrt[\[Epsilon]])*Sqrt[\[Epsilon]] +
4*Sqrt[Da]*
(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \
[Gamma])^3*\[Epsilon] -
12*Da^(3/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*
(-1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 + 2*\
[Beta]*Sqrt[\[Epsilon]] + \[Epsilon]) +
E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + 2*\
[Beta]*Sqrt[\[Epsilon]] +
\[Gamma]*(1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \
[Epsilon]))))^2))