Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- To: mathgroup at smc.vnet.net
- Subject: [mg77562] Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- From: Andrew Moylan <andrew.j.moylan at gmail.com>
- Date: Wed, 13 Jun 2007 07:24:04 -0400 (EDT)
Consider the following integral:
Assuming[0 < r < Infinity && 0 < \[Rho] < Infinity && 0 < s <
Infinity,
Integrate[(\[Rho]*
r)/(Sqrt[s^2 + z^2]*(1 + Sqrt[s^2 + z^2]/r)^2), {z, -
Infinity,
Infinity}]]
Mathematica 5.1 gives the solution as:
-((1/(45*s^2))*(2*r*\[Rho]*
(-15*s^2 + 6*r^2*
Hypergeometric2F1[1, 2,
7/2, 1 - r^2/s^2] -
6*s^2*Hypergeometric2F1[
1, 2, 7/2,
1 - r^2/s^2] -
3*(r^2 - s^2)*
HypergeometricPFQ[
{1, 1, 3/2}, {5/2,
7/2}, 1 - r^2/s^2] -
8*(r^2 - s^2)*
HypergeometricPFQ[
{1, 3/2, 2}, {5/2,
7/2}, 1 - r^2/s^2] -
4*r^2*HypergeometricPFQ[
{3/2, 2, 2}, {5/2,
7/2}, 1 - r^2/s^2] +
4*s^2*HypergeometricPFQ[
{3/2, 2, 2}, {5/2,
7/2}, 1 - r^2/s^2])))
Mathematica 6 instead gives the following conditional solution:
r^3*\[Rho]*If[r < s, ((-Pi)*r + 2*Sqrt[-r^2 + s^2] +
2*r*ArcTan[r/Sqrt[-r^2 + s^2]])/(-r^2 + s^2)^(3/2),
Integrate[1/(Sqrt[s^2 + z^2]*(r + Sqrt[s^2 + z^2])^2),
{z, -Infinity, Infinity}, Assumptions -> Element[z, Reals] &&
s > 0 && r >= s && \[Rho] > 0]]