Integrate modified in version 6?
- To: mathgroup at smc.vnet.net
- Subject: [mg77938] Integrate modified in version 6?
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 20 Jun 2007 05:30:14 -0400 (EDT)
I don't have 6 to be more rigorous but
based on some integrals post in another
forum by Vladimir Bondarenko I am quite
sure that something has change in the integration
algorithm for definite integrals...
Say for example the integral Integrate[z ArcSin[z]/(1+z)^2, {z, 0,
1}].
In Mathematica 6 we have
Integrate[z ArcSin[z]/(1+z)^2, {z, 0, 1}]
-Infinity
which is far away from truth.
The good old (?) Mathematica 5.2 returns
In[3]:=
Integrate[z*(ArcSin[z]/(1 + z)^2), {z, 0, 1}]
{N[%], NIntegrate[z*(ArcSin[z]/(1 + z)^2), {z, 0, 1}]}
Out[3]=
-1 - 2*Catalan + Pi*(1/4 + Log[2])
Out[4]=
{0.13105306534661265, 0.1310530653479215}
Let's add an rule for Limit in 5.2
Unprotect[Limit];
Limit[x___] := Null /; Print[InputForm[limit[x]]];
Let's get the integral
In[4]:=
Integrate[z*(ArcSin[z]/(1 + z)^2), {z, 0, 1}]
>From In[4]:=
limit[z^2, z -> 0, Direction -> -1, Assumptions -> True]
>From In[4]:=
limit[(1/4 - (-1 + z)^2/16)*(Pi/2 + I*Sqrt[2]*Sqrt[-1 +
z] - ((I/6)*(-1 + z)^(3/2))/Sqrt[2] + (((3*I)/80)*(-1 +
z)^(5/2))/
Sqrt[2]), z -> 1, Direction -> 1, Assumptions -> True]
>From In[4]:=
limit[(1/4 - (-1 + z)^2/16)*(Pi/2 + I*Sqrt[2]*Sqrt[-1 +
z] - ((I/6)*(-1 + z)^(3/2))/Sqrt[2] + (((3*I)/80)*(-1 +
z)^(5/2))/
Sqrt[2]), z -> 1, Direction -> 1, Assumptions -> True]
>From In[4]:=
limit[z^2, z -> 0, Direction -> -1, Assumptions -> True]
>From In[4]:=
limit[((-I)*(1 + z)*ArcSin[z]^2 + ArcSin[z]*(2 + I*Pi*(1 + z) + 4*(
1 + z)*Log[1 - I*E^(
I*ArcSin[z])]) + 2*(Sqrt[1 - z^2] + Pi*(
1 + z)*Log[1 - I*E^(
I*ArcSin[z])] + 2*Pi*(1 + z)*Log[(1 +
E^(I*ArcSin[z]))/
E^(I*
ArcSin[z])] - 2*Pi*Log[Cos[ArcSin[z]/2]] - 2*
Pi*z*Log[Cos[ArcSin[z]/
2]] - Pi*Log[Sin[(Pi + 2*ArcSin[z])/4]] - Pi*z*Log[
Sin[(Pi +
2*ArcSin[z])/4]]) - (4*
I)*(1 + z)*PolyLog[2, I*E^(I*ArcSin[z])])/(2*(1 +
z)), z -> 1, Direction -> 1, Assumptions ->
True]
>From In[4]:=
limit[((-I)*(1 + z)*ArcSin[z]^2 + ArcSin[z]*(2 + I*Pi*(1 + z) + 4*(
1 + z)*Log[1 - I*E^(
I*ArcSin[z])]) + 2*(Sqrt[1 - z^2] + Pi*(
1 + z)*Log[1 - I*E^(
I*ArcSin[z])] + 2*Pi*(1 + z)*Log[(1 +
E^(I*ArcSin[z]))/
E^(I*
ArcSin[z])] - 2*Pi*Log[Cos[ArcSin[z]/2]] - 2*
Pi*z*Log[Cos[ArcSin[z]/
2]] - Pi*Log[Sin[(Pi + 2*ArcSin[z])/4]] - Pi*z*Log[
Sin[(Pi +
2*ArcSin[z])/4]]) - (4*
I)*(1 + z)*PolyLog[2, I*E^(I*ArcSin[z])])/(2*(1 +
z)), z -> 0, Direction -> -1, Assumptions ->
True]
It can be seen that the integral is evaluated by application of
the NL formula.
Let's do the same in version 6:
Here is the output as Vladimir sent me
(sortening a little!)
limit[z^2, z -> 0, Direction -> -1, Assumptions -> True]
limit[Pi/8 - ((I/2)*Sqrt[-1 + z])/Sqrt[2] + ((I/24)*(-1 + \
z)^(3/2))/Sqrt[2] - (Pi*(-1 + z)^2)/32, z -> 1, Direction -> 1, \
Assumptions -> True]
limit[Pi/8 - ((I/2)*Sqrt[-1 + z])/Sqrt[2] + ((I/24)*(-1 + \
z)^(3/2))/Sqrt[2] - (Pi*(-1 + z)^2)/32, z -> 1, Direction -> 1, \
Assumptions -> True]
limit[z^2, z -> 0, Direction -> -1, Assumptions -> True]
limit[z*((Pi*Integrate`ImproperDump`MeijerGfunction[{}, {1}, {0}, {},
\
z^2])/2 - (Sqrt[Pi]*Integrate`ImproperDump`MeijerGfunction[{}, {1, \
1}, {0, 1/2}, {}, \
z^2])/2)*Integrate`ImproperDump`MeijerGfunction[{-1}, {}, {0}, {}, \
z], z -> Infinity, Assumptions -> True]
limit[2/(z^2*(Pi*Integrate`ImproperDump`MeijerGfunction[{}, {1}, {0},
\
{}, z^2] - Sqrt[Pi]*Integrate`ImproperDump`MeijerGfunction[{}, {1, \
1}, {0, 1/2}, {}, z^2])*Integrate`ImproperDump`MeijerGfunction[{-1},
\
{}, {0}, {}, z]), z -> Infinity, Assumptions -> True]
limit[System`MeijerGDump`zz$2982, System`MeijerGDump`zz$2982 -> 1]
limit[(-3*Pi*System`MeijerGDump`zz$2982)/2, \
System`MeijerGDump`zz$2982 -> 1]
limit[(Pi*(-Sqrt[System`MeijerGDump`zz$2982] - \
ArcTan[Sqrt[System`MeijerGDump`zz$2982]] + \
System`MeijerGDump`zz$2982*ArcTan[Sqrt[System`MeijerGDump`zz
$2982]]))/
\
(-1 + System`MeijerGDump`zz$2982) - \
(3*Pi*System`MeijerGDump`zz$2982*((2*System`MeijerGDump`zz$2982*((1 -
\
System`MeijerGDump`zz$2982)^(-1) - (-System`MeijerGDump`zz$2982 - \
Log[1 - System`MeijerGDump`zz$2982])/System`MeijerGDump`zz$2982^2))/3
\
- Log[1 - System`MeijerGDump`zz$2982]/System`MeijerGDump`zz$2982))/2
\
+ (Pi*(-Log[System`MeijerGDump`zz$2982] + PolyGamma[0, 1/2] - \
PolyGamma[0, 3/2]))/2, System`MeijerGDump`zz$2982 -> 1, Direction ->
\
1]
limit[(2*K$3121*(1 + K$3121)*System`MeijerGDump`zz$3095^(1/2 + \
K$3121)*Gamma[1/2 + K$3121])/((1 + 2*K$3121)*Gamma[1 + K$3121]), \
K$3121 -> Infinity, Assumptions -> True]
limit[System`MeijerGDump`zz$3095, K$3121 -> Infinity, Analytic -> \
True, Assumptions -> K$3121 > 1073741824]
limit[K$3121^(-1), K$3121 -> 0, Assumptions -> K$3121^(-1) > \
1073741824]
limit[K$3121^(-1), K$3121 -> 0, Assumptions -> K$3121^(-1) > \
1073741824]
limit[(2 + K$3121)/(2*K$3121), K$3121 -> 0, Assumptions -> \
K$3121^(-1) > 1073741824]
limit[(2 + K$3121)/(2*K$3121), K$3121 -> 0, Assumptions -> \
K$3121^(-1) > 1073741824]
limit[((2 + K$3121)*(1 + \
2*K$3121)^2*System`MeijerGDump`zz$3095)/(2*(1 + K$3121)^2*(3 + \
2*K$3121)), K$3121 -> Infinity, Assumptions -> True]
limit[System`MeijerGDump`zz$3095^(1/2 + K$3806)/Sqrt[K$3806], K$3806 -
> \
Infinity, Assumptions -> True]
-Infinity
Bang!
>From this output I am quite sure that no NL thoerem
to the indefinite integral takes place but rather
straightly convolution (I write it correct now;
Cheers David Cantrell!)
Any comments by WRI well informative persons
(and other of course!) will be greatly appreciate.
- Follow-Ups:
- Re: Integrate modified in version 6?
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Integrate modified in version 6?