Re: Parse results from Solve
- To: mathgroup at smc.vnet.net
- Subject: [mg73910] Re: Parse results from Solve
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 3 Mar 2007 00:56:39 -0500 (EST)
- References: <es916i$2u2$1@smc.vnet.net>
=CF/=C7 nikki_74 =DD=E3=F1=E1=F8=E5: > I have used the Solve command to get the solutions for a system of equati= ons. However I want to use these solutions in other commands, such as Reduc= e and Simplify. > > For instance, say the output of Solve is, > sols= {{x->0,y->0},{x->1,y->2}} > > and I want all solutions where x!=y , or , all solutions where y>1. > > Can anybody help with this? Thanks! Use directly Reduce! In[38]:= Solve[x^2 - 3*y^4 == 0 && x + y == 2, {x, y}] N[%] Out[38]= {{x -> 2 + 1/(2*Sqrt[3]) + (1/2)*Sqrt[1/3 + 8/Sqrt[3]], y -> (1/2)*(- (1/Sqrt[3]) - Sqrt[1/3 + 8/Sqrt[3]])}, {x -> (1/2)*(4 - 1/Sqrt[3] - I*Sqrt[(1/3)*(-1 + 8*Sqrt[3])]), y -> 1/ (2*Sqrt[3]) + (1/2)*I*Sqrt[(1/3)*(-1 + 8*Sqrt[3])]}, {x -> (1/2)*(4 - 1/Sqrt[3] + I*Sqrt[(1/3)*(-1 + 8*Sqrt[3])]), y -> 1/ (2*Sqrt[3]) - (1/2)*I*Sqrt[(1/3)*(-1 + 8*Sqrt[3])]}, {x -> (1/6)*(12 + Sqrt[3] - Sqrt[3*(1 + 8*Sqrt[3])]), y -> (1/2)*(- (1/Sqrt[3]) + Sqrt[1/3 + 8/Sqrt[3]])}} Out[39]= {{x -> 3.401344839274771, y -> -1.4013448392747707}, {x -> 1=2E7113248654051871 - 1.0350686958100501*I, y -> 0.28867513459481287 + 1.0350686958100501*I}, {x -> 1=2E7113248654051871 + 1.0350686958100501*I, y -> 0.28867513459481287 - 1.0350686958100501*I}, {x -> 1=2E1760054299148548, y -> 0.823994570085145}} Why to "play" now with Out[38] while for example In[49]:= Reduce[x^2 - 3*y^4 == 0 && x + y == 2, {x, y}, Reals] ToRadicals[%] LogicalExpand[%] Out[49]= (x == Root[48 - 96*#1 + 71*#1^2 - 24*#1^3 + 3*#1^4 & , 1] || x == Root[48 - 96*#1 + 71*#1^2 - 24*#1^3 + 3*#1^4 & , 2]) && y == 2 - x Out[50]= (x == 2 + 1/(2*Sqrt[3]) - (1/2)*Sqrt[1/3 + 8/Sqrt[3]] || x == 2 + 1/ (2*Sqrt[3]) + (1/2)*Sqrt[1/3 + 8/Sqrt[3]]) && y == 2 - x Out[51]= (x == 2 + 1/(2*Sqrt[3]) - (1/2)*Sqrt[1/3 + 8/Sqrt[3]] && y == 2 - x) || (x == 2 + 1/(2*Sqrt[3]) + (1/2)*Sqrt[1/3 + 8/Sqrt[3]] && y == 2 -= x) In[47]:= Reduce[x^2 - 3*y^4 == 0 && x + y == 2 && y < 0, {x, y}, Reals] ToRadicals[%] Out[47]= x == Root[48 - 96*#1 + 71*#1^2 - 24*#1^3 + 3*#1^4 & , 2] && y == 2 = - x Out[48]= x == 2 + 1/(2*Sqrt[3]) + (1/2)*Sqrt[1/3 + 8/Sqrt[3]] && y == 2 - x Regards Dimitris