MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: how to find complete integral of pde

  • To: mathgroup at smc.vnet.net
  • Subject: [mg74425] Re: how to find complete integral of pde
  • From: "dimitris" <dimmechan at yahoo.com>
  • Date: Wed, 21 Mar 2007 02:45:16 -0500 (EST)
  • References: <etlqcn$rap$1@smc.vnet.net><etof1d$i2v$1@smc.vnet.net>

Load the package first!


In[134]:=
<< "Calculus`DSolveIntegrals`"
CompleteIntegral[D[u[x, y], x]*1.5*(1 - 4*y^2) == Br*144*y^2 + D[u[x,
y], y]^2, u[x, y], {x, y}]

Out[135]=
{{u[x, y] -> x*B[1] - 6.*y*Sqrt[-1.*Br*y^2 +
0=2E010416666666666666*B[1.] - 0.041666666666666664*y^2*B[1.]] + B[2] -
     ((0. + 0.0625*I)*B[1.]*Log[(0. - 2.*I)*y*Sqrt[1.*Br +
0=2E041666666666666664*B[1.]] +
         2.*Sqrt[-1.*Br*y^2 + 0.010416666666666666*B[1.] -
0=2E041666666666666664*y^2*B[1.]]])/
      Sqrt[1.*Br + 0.041666666666666664*B[1.]]},
  {u[x, y] -> x*B[1] + 6.*y*Sqrt[-1.*Br*y^2 +
0=2E010416666666666666*B[1.] - 0.041666666666666664*y^2*B[1.]] + B[2] +
     ((0. + 0.0625*I)*B[1.]*Log[(0. - 2.*I)*y*Sqrt[1.*Br +
0=2E041666666666666664*B[1.]] +
         2.*Sqrt[-1.*Br*y^2 + 0.010416666666666666*B[1.] -
0=2E041666666666666664*y^2*B[1.]]])/
      Sqrt[1.*Br + 0.041666666666666664*B[1.]]}}

Try this:

Menu->Cell->Default Input Format Type->InputForm
Menu->Cell->Default Output Format Type->InputForm




=CF/=C7 bhargavi =DD=E3=F1=E1=F8=E5:
> hi, tx alot for ur reply.
> i copied input from mathematica5.2, n pasting here.
> \!\(CompleteIntegral[D[u[x, y], x]*1.5*\((
>     1 - 4\ y\^2)\) == \ Br\ 144\ y\^2\  + D[u[x, y], y]^2, u[x, y],
> {x, y}]\)
>
> i tried like what u said press Ctrl+Shift+I (after selecting the
> cell(s)).still i did't get it.
> could u try my input in ur mathematica n get me.plz..
> thanking you
> bhargavi
>
>
>
>  dimitris wrote:
> > =CF/=C7 bhargavi =DD=E3=F1=E1=F8=E5:
> > > hi to all,can anyone how to find complete integral in mathematica. i
> > > tried like this.but the output is same as input. \!\
> > > (CompleteIntegral[1.5\ \((1 - 4\ y\^2)\)\ D[=CE=B8[x, y],
> > >           x] == \ D[=CE=B8[x, y], y]^2 + 144\ Br\ y, =CE==
B8[x=
> > , y], {x, =
> > > y}]\).
> > > if anybody knows please suggest me.
> > > bhargavi
> >
> > Your post is unreadable.
> > Try to repost again this time by converting your Mathematica
> > expressions to InputForm,
> > by simply press Ctrl+Shift+I (after selecting the cell(s)).
> >
> > Dimitris



  • Prev by Date: Re: how to find complete integral of pde
  • Next by Date: Re: Function[x...] and #& not equivalent
  • Previous by thread: Re: how to find complete integral of pde
  • Next by thread: Membrane