Re: simplifications
- To: mathgroup at smc.vnet.net
- Subject: [mg74527] Re: simplifications
- From: roland franzius <roland.franzius at uos.de>
- Date: Sat, 24 Mar 2007 05:19:34 -0500 (EST)
- Organization: Universitaet Hannover
- References: <eu1rpt$lf6$1@smc.vnet.net>
dimitris wrote: > Hello. > > Below I use Mathematica to get some definite integrals along with > simplifications > of the results. > > ln[9]:= > f1 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, 0, Pi}]] > Out[9]= > (1/8)*Pi*(2*Pi + 8*I*ArcSinh[1] + Log[((2 - Sqrt[2])^(9*I)*(2 + > Sqrt[2])^(7*I))/(10 - 7*Sqrt[2])^(3*I)] + > Log[(6 + 4*Sqrt[2])^(-6*I)] - I*Log[10 + 7*Sqrt[2]]) > > In[10]:= > f2 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, -2*Pi, > 2*Pi}]] > Out[10]= > -Pi^2 > > In[11]:= > f3 = FullSimplify[Tr[(Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, > #1[[1]], #1[[2]]}] & ) /@ Partition[Range[0, Pi, Pi/2], 2, 1]]] > Out[11]= > Pi^2/4 > > In[12]:= > f4 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, 0, Pi/2, > Pi}]] > Out[12]= > Pi^2/4 > > In[13]:= > f5 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, 0, 5*Pi}]] > Out[13]= > (5*Pi^2)/4 > > In[14]:= > f6 = FullSimplify[Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, -Pi, Pi}]] > Out[14]= > (1/4)*Pi*(2*Pi + 8*I*ArcSinh[1] + Log[((2 - Sqrt[2])^(9*I)*(2 + > Sqrt[2])^(7*I))/(10 - 7*Sqrt[2])^(3*I)] + > Log[(6 + 4*Sqrt[2])^(-6*I)] - I*Log[10 + 7*Sqrt[2]]) > > No matter what I try I couldn't simplify f1 and f6 directly to Pi^2/4 > and Pi^2/2. The following evaluation shows that you are running into the complexity of ArcTan riemann surface problems res = Integrate[x*(Sin[x]/(1 + Cos[x]^2)), {x, -Pi, Pi}]; (res // TrigToExp // FullSimplify // TrigToExp) //. {Pi/4 Log[b_] + Pi/4 Log[c_] + d___ :> Pi/4 Log[ b c] + d} // FullSimplify (1/2 + I/2)*Pi^2 You should consult the ArcTan page at mathworld. Formal Log and ArcTan expressions from integrals dont deserve much confidence. In this case I use a Log formula which is defnitely wrong in the complex domain. -- Roland Franzius