Re: a suprising result from Integrate (Null appeared in the
- To: mathgroup at smc.vnet.net
- Subject: [mg74546] Re: a suprising result from Integrate (Null appeared in the
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sun, 25 Mar 2007 01:28:28 -0500 (EST)
- References: <eu1r2o$jd6$1@smc.vnet.net><eu2u1f$puv$1@smc.vnet.net>
In[258]:= $Version Out[258]= "5.2 for Microsoft Windows (June 20, 2005)" (*wrong*) In[265]:= Integrate[(1 - Sin[x])^(1/4), {x, 0, 2*Pi}] Out[265]= 0 (*wrong*) In[267]:= Integrate[(1 - Sin[x])^(1/4), x] Out[267]= -4*(1 - Sin[x])^(1/4) - (4*Null*Sqrt[1 - Sin[x]])/(Cos[x/2] - Sin[x/ 2]) One other way for getting the definite integral Integrate[(1 - Sin[x])^(1/4), {x, 0, 2*Pi}] and the indefinite integral Integrate[(1 - Sin[x])^(1/4), x] with the current version is In[269]:= Integrate[(1 - Sin[x])^a, {x, 0, 2*Pi}, Assumptions -> a > -1] % /. a -> 1/4 (*check*) {N[%], NIntegrate[(1 - Sin[x])^(1/4), {x, 0, Pi/2, 2*Pi}]} Out[269]= Pi*Hypergeometric2F1[1/2 - a/2, -(a/2), 1, 1] + (2*HypergeometricPFQ[{1/2, 1/2, 1}, {1 + a/2, 3/2 + a/2}, 1])/(1 + a) + 2*a*HypergeometricPFQ[{1, 1/2 - a/2, 1 - a/2}, {3/2, 3/2}, 1] Out[270]= (Pi*Gamma[3/4])/(Gamma[5/8]*Gamma[9/8]) + (1/2)*HypergeometricPFQ[{3/8, 7/8, 1}, {3/2, 3/2}, 1] + (8/5)*HypergeometricPFQ[{1/2, 1/2, 1}, {9/8, 13/8}, 1] Out[271]= {5.699347567674384, 5.699347567679635} As regards the indefinite integral In[292]:= Integrate[(1 - Sin[x])^a, x] % /. a -> 1/4 FullSimplify[%] FunctionExpand[%] (*check*) FullSimplify[D[{%, %%}, x]] Out[292]= Cos[x]*Hypergeometric2F1[1/2, 1/2 - a, 3/2, Cos[(1/4)*(Pi - 2*x)]^2]*(Sin[(1/4)*(Pi - 2*x)]^2)^(-(1/2) - a)*(1 - Sin[x])^a Out[293]= (Cos[x]*Hypergeometric2F1[1/2, 1/4, 3/2, Cos[(1/4)*(Pi - 2*x)]^2]*(1 - Sin[x])^(1/4))/(Sin[(1/4)*(Pi - 2*x)]^2)^(3/4) Out[294]= (2^(3/4)*Cos[x]*Hypergeometric2F1[1/2, 1/4, 3/2, Cos[(1/4)*(Pi - 2*x)]^2])/Sqrt[1 - Sin[x]] Out[295]= (Beta[Cos[(1/4)*(Pi - 2*x)]^2, 1/2, 3/4]*Cos[x])/ (2^(1/4)*Sqrt[Cos[(1/4)*(Pi - 2*x)]^2]*Sqrt[1 - Sin[x]]) Out[296]= {(1 - Sin[x])^(1/4), (1 - Sin[x])^(1/4)} Dimitris =CF/=C7 Peter Pein =DD=E3=F1=E1=F8=E5: > Bhuvanesh schrieb: > > Yes, this was reported and fixed quite a while back, and should be fine= in the next version. Another example of the bad behavior was Integrate[Sqr= t[Sin[x] + Cos[x]], x]. For your indefinite integrals I currently get, in t= he development build: > > > until then, a simple linear shift of variables helps: > > f[x_] = (1 - Sin[x])^(1/4); > approx = NIntegrate[f[x], {x, 0, Pi/2, 2*Pi}, WorkingPrecision -> 32] > inexact = Integrate[f[x], {x, 0, Pi/2, 2*Pi}] > > 5.699347567674386465367 > 0 > > exact = > FullSimplify[Integrate[FullSimplify[f[x + Pi/2]], {x, -Pi/2, 0, 3*(Pi/2= )}]] > > 8*2^(1/4)*EllipticE[Pi/4, 2] > > Chop[N[exact] - approx] > 0 > > as an alternative to FullSimplify, use TrigToExp: > > F[z_] = Simplify[Integrate[TrigToExp[f[x + Pi/2]], {x, -Pi/2, z - Pi/2}= ]] > > z*((1/z)*(4*I - 4*(1 + I)^(3/2)*Hypergeometric2F1[-(1/4), 1/2, 3/4, -I]) + > (2*2^(3/4)*((I*(-I + E^(I*z))^2)/E^(I*z))^(1/4)*(-1 - I*E^(I*z) + > 2*Sqrt[1 + I*E^(I*z)]*Hypergeometric2F1[-(1/4), 1/2, 3/4, (-I)*E^(I*z)= ]))/ > ((-I + E^(I*z))*z)) > > Plot[Chop[F[z]], {z, 0, 2*Pi}] > [omitted] > > alternateexact = FullSimplify[ > Subtract @@ (Limit[F[z], z -> Pi/2, Direction -> #1] & ) /@ {1, -1}] > > (8*2^(1/4)*Sqrt[Pi]*Gamma[3/4])/Gamma[1/4] > > Chop[N[alternateexact] - approx] > 0 > > Peter