Re: Choosing preferred functions for Trig Simplification?
- To: mathgroup at smc.vnet.net
- Subject: [mg83204] Re: Choosing preferred functions for Trig Simplification?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 15 Nov 2007 05:31:46 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <fhegov$m8b$1@smc.vnet.net>
AES wrote: > In Simplifying expressions containing multiple Trig functions, I'd like > to persuade Mathematica to limit its vocabulary to Sin, Cos and Tan, > and avoid Sec, Csc and Cot (while continuing to put expressions into the > simplest Together form, and so on). > > Are there simple tricks or Assumptions or options to do this? You could use the option *ComplexityFunction* and define your own complexity function that would penalized the usage of the unwanted trigonometric functions. For instance, In[1]:= f[e_] := 100 Count[e, _Sec | _Csc | _Cot, {0, Infinity}] + LeafCount[e] In[2]:= expr = (TrigExpand[Cot[x + y]] + Sec[y]) Out[2]= Cos[x] Cos[y] Sin[x] Sin[y] Sec[y] + ----------------------------- - ----------------------------- Cos[y] Sin[x] + Cos[x] Sin[y] Cos[y] Sin[x] + Cos[x] Sin[y] In[3]:= Simplify[expr, ComplexityFunction -> #] & /@ {Automatic, f} LeafCount /@ % Out[3]= 1 {- Csc[x + y] Sec[y] (Cos[x] + Cos[x + 2 y] + 2 Sin[x + y]), 2 -Sin[x] (-1 + Sin[y]) + Cos[x] (Cos[y] + Tan[y]) ------------------------------------------------} Cos[y] Sin[x] + Cos[x] Sin[y] Out[4]= {25, 31} Regards, -- Jean-Marc