Re: Solving Tanh[x]=Tanh[a]Tanh[b x + c]
- To: mathgroup at smc.vnet.net
- Subject: [mg83471] Re: [mg83424] Solving Tanh[x]=Tanh[a]Tanh[b x + c]
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Wed, 21 Nov 2007 02:51:55 -0500 (EST)
- References: <31486144.1195561117246.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
step1 = Tanh[x] - Tanh[a] Tanh[b x + c] // TrigToExp // Together // Numerator; assume = {xx \[Element] Reals, {c1 | c3} \[Element] Reals, b \[Element] Integers, b > 0}; step2 = Simplify[ step1 /. {x -> Log[xx]/2, c -> Log[c1]/2, a -> Log[c3]/2}, assume]; step3 = step2/2 // Expand; pure = Evaluate[step3 /. xx -> #] & -1 + c3 #1 - c1 c3 #1^b + c1 #1^(1 + b) & Bobby On Tue, 20 Nov 2007 02:49:22 -0600, Yaroslav Bulatov <yaroslavvb at gmail.com> wrote: > I'd like to use Mathematica to show that solution of Tanh[x] - Tanh[a] > Tanh[b x + c]=0 can be written as > 1/2 Log (Root[c1 x^(1+b) + c2 x^b + c3 x -1]) for certain coefficients > c1,c2,c3 when b is a positive integer > > Tanh[x] - Tanh[a] Tanh[b x + c]// TrigToExp // Together // Numerator > gives me almost what I need, except now I need to factor out Exp[2x] > as a separate variable. What's the best way of achieving it? Using > syntactic replacement rules like {Exp[a_+b_]->Exp[a]Exp[b],Exp[2x]->x} > seems like an uphill battle against the evaluator which automatically > simplifies Exp expressions > > Yaroslav > > -- DrMajorBob at bigfoot.com