Re: transformation rule (some
- To: mathgroup at smc.vnet.net
- Subject: [mg87781] Re: transformation rule (some
- From: UHAP023 at alpha1.rhbnc.ac.uk
- Date: Wed, 16 Apr 2008 22:32:52 -0400 (EDT)
- Organization: Low Temperature Physics, RHUL
- References: <ftq5ab$it$1@smc.vnet.net> <ftscv1$b81$1@smc.vnet.net> <ftv91s$7ur$1@smc.vnet.net> <200804150954.FAA25209@smc.vnet.net> <fu4fi0$ngj$1@smc.vnet.net>
Daniel Lichtblau <danl at wolfram.com> wrote:
[cut]
: If you are not averse to using a global flag variable, you can do it as
: follows.
: Unprotect[Integrate];
: globalIntegrateFlag = True;
: Integrate[args__] := Block[
: {globalIntegrateFlag=False, res},
: res = Integrate[args];
: If [FreeQ[res,EllipticF], res, HoldForm[Integrate[args]]]
: ] /; globalIntegrateFlag===True
: Examples:
: In[7]:= InputForm[Integrate[1/Sqrt[1 - m*Sin[phi]^2], phi]]
: Out[7]//InputForm= HoldForm[Integrate[1/Sqrt[1 - m*Sin[phi]^2], phi]]
: In[8]:= Integrate[1/Sqrt[1 - phi^2], phi]
: Out[8]= ArcSin[phi]
Many thanks. This is what I was after.
Cheers
Tom.
Ps. The Email address in the header is just a spam-trap.
--
Tom Crane, Dept. Physics, Royal Holloway, University of London, Egham Hill,
Egham, Surrey, TW20 0EX, England.
Email: T.Crane at rhul dot ac dot uk
Fax: +44 (0) 1784 472794
- References:
- Re: Deleting Integrate[] transformation rule (some progress)
- From: UHAP023@alpha1.rhbnc.ac.uk
- Re: Deleting Integrate[] transformation rule (some progress)