2*m^z - m^z = ?
- To: mathgroup at smc.vnet.net
- Subject: [mg88104] 2*m^z - m^z = ?
- From: Alexey Popkov <popkov at gmail.com>
- Date: Fri, 25 Apr 2008 05:26:33 -0400 (EDT)
Hello,
What do you think about this:
Table[
{2*m^z - m^z,
FullSimplify[2*m^z - m^z]},
{m, 1, 21}] // TableForm
The answer is very interesting (only odd numbers are treated well):
1 1
-2^z + 2^(1 + z) 2^z
3^z 3^z
2^(1 + 2*z) - 4^z 4^z
5^z 5^z
2^(1 + z)*3^z - 6^z 2^(1 + z)*3^z - 6^z
7^z 7^z
2^(1 + 3*z) - 8^z 8^z
9^z 9^z
2^(1 + z)*5^z - 10^z 2^(1 + z)*5^z - 10^z
11^z 11^z
2^(1 + 2*z)*3^z - 12^z 2^(1 + 2*z)*3^z - 12^z
13^z 13^z
2^(1 + z)*7^z - 14^z 2^(1 + z)*7^z - 14^z
15^z 15^z
2^(1 + 4*z) - 16^z 16^z
17^z 17^z
2^(1 + z)*9^z - 18^z 2^(1 + z)*9^z - 18^z
19^z 19^z
2^(1 + 2*z)*5^z - 20^z 2^(1 + 2*z)*5^z - 20^z
21^z 21^z
Can anyone explain the reason for this behavior?
- Follow-Ups:
- Re: 2*m^z - m^z = ?
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: 2*m^z - m^z = ?
- From: Syd Geraghty <sydgeraghty@mac.com>
- Re: 2*m^z - m^z = ?