Re: Manipulate with specified step size
- To: mathgroup at smc.vnet.net
- Subject: [mg91045] Re: Manipulate with specified step size
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Mon, 4 Aug 2008 03:25:35 -0400 (EDT)
- References: <g6h5em$h1k$1@smc.vnet.net>
Hi,
on your t-slider is on the left side a little minus, you may call the
slider with
Manipulate[
___,
{t, 0, 8, 1, Appearance -> "Open"}
]
and than you see the animation control.
And
DynamicModule[{convolved},
convolved[z_] = conv[x, y, z] // PiecewiseExpand;
Manipulate[
Show[
Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s,
0,
8}, PlotRange -> {{-.01, 8}, {-.4, 2}},
PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}},
Exclusions -> None],
Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1},
PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
Exclusions -> None],
Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis,
PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
Exclusions -> None],
Plot[Evaluate[Tooltip[convolved[ z], "(f*g)(t)"]], {z, -.01, t},
PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue,
Exclusions -> None],
Graphics[{Dashed, Line[{{t, -6}, {t, convolved[t]}}]}],
Graphics[
Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]]
]
, {t, 0, 8, 1, Appearance -> "Open"}]
]
should be faster.
Regards
Jens
J Davis wrote:
> I wanted to revisit the issue in this thread:
>
> http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/4e94adfcb4cd4491/303f37e538bcd6e1?lnk=gst&q=manipulate+play#303f37e538bcd6e1
>
> I have the following:
>
> conv[f_, g_, t_] = \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(f[s]
> g[t - s] \[DifferentialD]s\)\);
>
> x[t_] = UnitStep[t - 2] - UnitStep[t - 3];
> y[t_] = UnitStep[t - 2] - UnitStep[t - 3];
>
>
> Manipulate[
> Show[
> Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s, 0,
> 8}, PlotRange -> {{-.01, 8}, {-.4, 2}},
> PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}},
> Exclusions -> None],
> Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1},
> PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
> Exclusions -> None],
> Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis,
> PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
> Exclusions -> None],
> Plot[Evaluate[Tooltip[conv[x, y, z], "(f*g)(t)"]], {z, -.01, t},
> PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue,
> Exclusions -> None],
> Graphics[{Dashed, Line[{{t, -6}, {t, conv[x, y, t]}}]}],
> Graphics[
> Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]]
> ]
> , {t, 0, 8, 1}
>
> When I move the slider the dynamics are slow to evaluate. I would be
> content to simply "play" the animation at the discrete values t=0 to
> t=8 in increments of 1. However, I have been unable to obtain that
> result.
>
> Suggestions?
>
> Thanks,
> John
>
> PS I am also surprised that these computations are slow since these
> are rather simple functions involved in the convolution.
>