Re: Archimedes' Spiral
- To: mathgroup at smc.vnet.net
- Subject: [mg85624] Re: Archimedes' Spiral
- From: Szabolcs <szhorvat at gmail.com>
- Date: Sat, 16 Feb 2008 03:25:54 -0500 (EST)
- References: <fp3uad$9gf$1@smc.vnet.net>
On Feb 15, 12:50 pm, "Lea Rebanks" <lreba... at netvigator.com> wrote:
> Hi All,
>
> I am trying to plot the Archimedes' Spiral.
>
> I copied this code from a web site. But it didn't work. Any ideas.
>
> ParaPlot[ArchimedeanSpiral[1][t],
> {t, 0, 10*2*Pi}, PlotDot ->
> False, AspectRatio -> Automatic,
> PlotLabel ->
> "Archimedes' spiral, r == theta"\
> , Ticks -> {Range[0, 60, 20],
> Range[0, 60, 20]},
> Background -> GrayLevel[0]];
> Do[ParaPlot[Evaluate[
> ArchimedeanSpiral[i][t]],
> {t, 0.0001, 5*2*Pi},
> PlotDot -> False, PlotPoints ->
> 30, AspectRatio -> Automatic,
> PlotRange -> {{-1, 1}, {-1, 1}}*
> (5*2*Pi)^i*1.1, PlotLabel ->
> StringForm["r == theta^``",
> PaddedForm[N[i], {4, 2}]],
> Ticks -> {{N[Floor[(4*2*Pi)^i]]},
> {N[Floor[(4*2*Pi)^i]]}},
> Background -> GrayLevel[0]],
> {i, 0, 2, 2/20}]
>
> Many thanks for your help & attention.
> Best Regards - Lea Rebanks...
You didn't post the full code ... what are ArchimedeanSpiral[] and
ParaPlot[]?
But why not simply use PolarPlot[r, {r, 0, 6Pi}]?