Re: an even faster way to normalize a
- To: mathgroup at smc.vnet.net
- Subject: [mg85669] Re: an even faster way to normalize a
- From: m.r at inbox.ru
- Date: Tue, 19 Feb 2008 01:50:20 -0500 (EST)
- References: <fp9945$199$1@smc.vnet.net>
On Feb 17, 6:25=A0am, congruentialumina... at yahoo.com wrote:
> Hello UG:
>
> I have a 512x512 array of 3-tuples. I want to make any tuple with a
> value outside of 0 <--> 1, become {0.,0.,0.}.
>
> The first version has this loop:
>
> For[i = 1, i <= graphSize, i++,
> =A0 For[j = 1, j <= graphSize, j++,
> =A0 =A0If[((sum[[i, j, 1]] < 0) || (sum[[i, j, 1]] > 1) ||
> =A0 =A0 =A0 (sum[[i, j, 2]] < 0) || (sum[[i, j, 2]] > 1) ||
> =A0 =A0 =A0 (sum[[i, j, 3]] < 0) || (sum[[i, j, 3]] > 1)),
> =A0 =A0 sum[[i, j]] = {0., 0., 0.}
> =A0 =A0 ]
> =A0 =A0]
> =A0 ];
>
> After scratching my head for a while I came up with this (equivalent)
> Map statement.
>
> sum = Map[
> =A0 =A0If[#[[1]] < 0 || #[[1]] > 1 || #[[2]] < 0 || #[[2]] > 1 || #[[3]] <=
> =A0 =A0 =A0 =A0 0 || #[[3]] > 1, {0., 0., 0.}, #] &, sum, {2}];
>
> It is faster but only by about 15%.
>
> It is unreasonable to believe some other construction can accomplish
> this with a bigger payoff?
>
> Thanks in advance.
>
> Regards..Roger W.
In version 6:
sum = RandomReal[{-1, 2}, {512, 512, 3}];
ans = sum N[Times @@ Unitize@ Clip[
Transpose[sum, {2, 3, 1}], {0., 1.}, {0., 0.}]];
N is needed to make sure that the result of the multiplication is a
(packed) array of reals.
Maxim Rytin
m.r at inbox.ru