RE: Filled Polar plots
- To: mathgroup at smc.vnet.net
- Subject: [mg85167] RE: [mg85089] Filled Polar plots
- From: "Jaccard Florian" <Florian.Jaccard at he-arc.ch>
- Date: Wed, 30 Jan 2008 06:17:39 -0500 (EST)
- References: <200801280825.DAA21414@smc.vnet.net>
Hello!
I believe the easiest way is to make it this way :
formula[m_, n1_, n2_, n3_] = Function[{x},
(Cos[(m*x)/4]^n2 + Sin[(m*x)/4]^n3)^(-n1^(-1))];
vals = {{3, 5, 18, 18}, {2, 1, 4, 8}, {3, 3, 14, 2}, {7, 2, 8,
4}};
GraphicsColumn[Table[PolarPlot[(formula @@ v)[x], {x, -Pi, Pi},
PlotRange -> All, Axes -> None] /. Line[a_] ->
{Yellow, EdgeForm[Thick], Polygon[a]}, {v, vals}]]
Regards
Florian Jaccard
-----Message d'origine-----
De=A0: Yaroslav Bulatov [mailto:yaroslavvb at gmail.com]
Envoy=E9=A0: lundi, 28. janvier 2008 09:25
=C0=A0: mathgroup at smc.vnet.net
Objet=A0: [mg85089] Filled Polar plots
What is the recommended way of creating filled polar plots? (assuming
it forms a closed non-intersecting curve)
I'm looking to create something like the image on =
http://en.wikipedia.org/wiki/Superformula,
but PolarPlot doesn't seem to have Filling options
formula[m_, n1_, n2_, n3_] =
Function[{x}, (Cos[(m x)/4]^n2 + Sin[(m x)/4]^n3)^(-1/n1)];
vals = {{3, 5, 18, 18}, {2, 1, 4, 8}, {3, 3, 14, 2}, {7, 2, 8, 4}};
Table[PolarPlot[(formula @@ v)[x], {x, -Pi, Pi}, PlotRange -> All,
Axes -> None], {v, vals}] // GraphicsColumn
- References:
- Filled Polar plots
- From: Yaroslav Bulatov <yaroslavvb@gmail.com>
- Filled Polar plots