Re: simple neural network with mathematica HELP
- To: mathgroup at smc.vnet.net
- Subject: [mg90335] Re: [mg90306] simple neural network with mathematica HELP
- From: DrMajorBob <drmajorbob at att.net>
- Date: Sun, 6 Jul 2008 07:19:26 -0400 (EDT)
- References: <13218198.1215251547827.JavaMail.root@m08>
- Reply-to: drmajorbob at longhorns.com
Something like this:
sigmoid[x_] := 1/(1 + E^(-x));
bpn[inputs_, hidWts_, outWts_] :=
Module[{hidOuts = sigmoid[hidWts.inputs]}, {hidOuts,
sigmoid[outWts.hidOuts]}]
bpnStandard[inNumber_, hidNumber_, outNumber_, ioPairs_, eta_,
numIters_] :=
Module[{errors, hidWts, outWts, inputs, outDesired, hidOuts, outputs,
outErrors, outDelta, hidDelta},
hidWts = RandomReal[{-.1, .1}, {hidNumber, inNumber}];
outWts = RandomReal[{-.1, .1}, {outNumber, hidNumber}];
errors = Table[{inputs, outDesired} = RandomChoice@ioPairs;
{hidOuts, outputs} = bpn[inputs, hidWts, outWts];
outErrors = outDesired - outputs;
outDelta = outErrors (outputs (1 - outputs));
hidDelta = (hidOuts (1 - hidOuts)) Transpose[outWts].outDelta;
outWts += eta Outer[Times, outDelta, hidOuts];
hidWts += eta Outer[Times, hidDelta, inputs];
outErrors.outErrors, {numIters}];
{hidWts, outWts, errors}]
ioPairs = {{{0.9, 0.9, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9,
0.9}, {0.1}}, {{0.9, 0.9, 0.9, 0.1, 0.9, 0.1, 0.1, 0.9,
0.1}, {0.9}}, {{0.9, 0.9, 0.9, 0.9, 0.1, 0.9, 0.9, 0.1,
0.9}, {0.1}}, {{0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.1, 0.1,
0.9}, {0.9}}, {{0.9, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9, 0.9,
0.9}, {0.1}}, {{0.1, 0.9, 0.1, 0.1, 0.9, 0.1, 0.9, 0.9,
0.9}, {0.9}}, {{0.9, 0.1, 0.9, 0.9, 0.1, 0.9, 0.9, 0.9,
0.9}, {0.1}}, {{0.9, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.1,
0.1}, {0.9}}};
outs = bpnStandard[9, 3, 1, ioPairs, 3, 250];
{hidWts, outWts, errors} = outs;
ListPlot[errors, PlotJoined -> True]
newInput = {0.1, 0.9, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9, 0.9};
Last@bpn[newInput, hidWts, outWts]
{0.240182}
Of course, 0 error can't be expected (or even defined) for a new input.
Bobby
On Sat, 05 Jul 2008 03:50:02 -0500, Dino <dinodeblasio at yahoo.it> wrote:
> Hello everybody,
>
> I have the following program:
> -----------------------------------------
> sigmoid[x_] := 1/(1 + E^(-x));
>
> bpnStandard[inNumber_, hidNumber_, outNumber_, ioPairs_, eta_,
> numIters_] :=
> Module[{errors, hidWts, outWts, ioP, inputs, outDesired, hidOuts,
> outputs, outErrors, outDelta, hidDelta},
> hidWts =
> Table[Table[Random[Real, {-0.1, 0.1}], {inNumber}], {hidNumber}];
> outWts =
> Table[Table[
> Random[Real, {-0.1, 0.1}], {hidNumber}], {outNumber}];
> errors =
> Table[ioP = ioPairs[[Random[Integer, {1, Length[ioPairs]}]]];
> inputs = ioP[[1]];
> outDesired = ioP[[2]];
> hidOuts = sigmoid[hidWts. inputs];
> outputs = sigmoid[outWts. hidOuts];
> outErrors = outDesired - outputs;
> outDelta = outErrors (outputs (1 - outputs));
> hidDelta = (hidOuts (1 - hidOuts)) Transpose[outWts].outDelta;
> outWts += eta Outer[Times, outDelta, hidOuts];
> hidWts += eta Outer[Times, hidDelta, inputs];
> outErrors.outErrors, {numIters}];
> Return[{hidWts, outWts, errors}];];
>
> ioPairs = {{{0.9, 0.9, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9,
> 0.9}, {0.1}}, {{0.9, 0.9, 0.9, 0.1, 0.9, 0.1, 0.1, 0.9,
> 0.1}, {0.9}}, {{0.9, 0.9, 0.9, 0.9, 0.1, 0.9, 0.9, 0.1,
> 0.9}, {0.1}}, {{0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.1, 0.1,
> 0.9}, {0.9}}, {{0.9, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9, 0.9,
> 0.9}, {0.1}}, {{0.1, 0.9, 0.1, 0.1, 0.9, 0.1, 0.9, 0.9,
> 0.9}, {0.9}}, {{0.9, 0.1, 0.9, 0.9, 0.1, 0.9, 0.9, 0.9,
> 0.9}, {0.1}}, {{0.9, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.1,
> 0.1}, {0.9}}};
>
> eta = 0.5
> --------------------------------------------------
> The above program train a network with ioPairs in input, one ioPair
> gives a input vector and the desired output.
> When I run the following:
> ------------------------
> outs = {0, 0, 0};
> outs = bpnStandard[9, 3, 1, ioPairs, 3, 250];
> ListPlot[outs[[3]], PlotJoined -> True]
> ------------------------------
> I train the network and the "errors" will be plotted, is possible to see
> that the errors go to 0 when the number of iteration "numIters" are a
> big number and modifying the eta factor.
> The question is: after i train the network, how is possible to show that
> the program recognize also an input vector slightly different from the
> original?
> For example the first vector in "ioPairs" is:
> {{0.9, 0.9, 0.9,
> 0.9, 0.1, 0.1,
> 0.9, 0.9, 0.9}, {0.1}}
>
> The first part represents the letter C and the desired output is 0.1.
> How is possible to verify that the network recognizes as C also the
> vector:
> {0.1, 0.9, 0.9,
> 0.9, 0.1, 0.1,
> 0.9, 0.9, 0.9} ??
>
> Please if you are interested in helping me, contact me at
> dinodeblasio at yahoo.it and i will also send you the pdf file from the
> book where I found the code, so you will understand exactly the problem.
>
> Thanks for your collaboration.
> Dino.
>
>
--
DrMajorBob at longhorns.com