Re: Problem: is not a list of numbers with dimensions
- To: mathgroup at smc.vnet.net
- Subject: [mg88492] Re: [mg88450] Problem: is not a list of numbers with dimensions
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 6 May 2008 06:44:25 -0400 (EDT)
- Reply-to: hanlonr at cox.net
In both cases, use Exp rather than exp
A = 1*10^(-4);
k = 2/3;
g = 1.12*10^(-11);
Attenuation = 0.23026*0.475*10^(-3);
L = 7200;
Leff = (1 - Exp[-Attenuation*L])/Attenuation;
FindRoot[x - A*Exp[k*g*x*Leff - Attenuation*L], {x, 0}]
{x->0.0000454986}
Bob Hanlon
---- Fikri Serdar GOKHAN <fsgokhan at gmail.com> wrote:
> When run the below code,
>
>
> A=1*10^(-4);
>
> k=2/3;
>
> g=1.12*10^(-11);
>
> Attenuation= 0.23026*0.475*10^(-3);
>
> L=7200;
>
> Leff=(1-exp[-Attenuation*L])/Attenuation;
>
>
>
> FindRoot[x-A*exp[k*g*x*Leff-Attenuation*L],{x,0}]
>
>
>
> It executes the below solution,
>
>
>
> FindRoot::nlnum: The function value {0.-0.0001 exp[-0.787489+0. \
>
> (1.+Times[<<2>>])]} is not a list of numbers with dimensions {1} at \
>
> {x} = {0.}.
>
>
>
> I need your help about numerical and Alpha_numeric solution of this problem.
>
>
>
>
> f(x)= x-A*exp[k*g*x*Leff-Attenuation*L
>
>
>
> Serdar
>
>