Re: Minimize
- To: mathgroup at smc.vnet.net
- Subject: [mg93570] Re: [mg93562] Minimize
- From: Carl Woll <carlw at wolfram.com>
- Date: Sat, 15 Nov 2008 06:02:46 -0500 (EST)
- References: <gfgqib$dm1$1@smc.vnet.net> <gfh3ca$g1d$1@smc.vnet.net> <200811140209.VAA16497@smc.vnet.net> <200811141136.GAA13071@smc.vnet.net>
Artur wrote:
>Dear Mathematica Gurus,
>What Mathematica procedure to use to minimize expotential finction e.g.
>Minimize[Abs[3^d + 5^f - 2^7], {d, f}]
>where we can push: d and f are both Integers
>
>NMinimize[Abs[3^d + 5^f - 2^7], {d, f}]
>Mathematica answer is:
>{2.66454*10^-14, {d -> 2.03248, f -> 2.96773}}
>
>good answer is:
>{d,f}={1,3}
>
>Best wishes
>Artur
>
>
Add a constraint:
In[43]:= NMinimize[{Abs[3^d + 5^f - 2^7], {d, f} \[Element] Integers},
{d, f}]
Out[43]= {0.,{d->1,f->3}}
Carl Woll
Wolfram Research
- References:
- Re: Model the surface of an ellipsoid
- From: Mayneord <xrayspectrum@googlemail.com>
- Minimize
- From: Artur <grafix@csl.pl>
- Re: Model the surface of an ellipsoid