Pi Formula
- To: mathgroup at smc.vnet.net
- Subject: [mg92920] Pi Formula
- From: Artur <grafix at csl.pl>
- Date: Sun, 19 Oct 2008 05:41:27 -0400 (EDT)
- References: <gcn4ge$7ad$1@smc.vnet.net> <200810120833.EAA08815@smc.vnet.net> <200810181024.GAA15999@smc.vnet.net>
- Reply-to: grafix at csl.pl
Dear Mathematica Gurus,
Who know which another function as Simplify or FullSimplify to use to
following formula
(Simplify do nothing but FullSimplify simplify too much).
1/8 (-2 I Sqrt[-7 - I] Log[1/5 ((1 - 2 I) + 2 Sqrt[-7 - I])] -
Log[(3 - 4 I)^Sqrt[7 + I]
5^((3 - I) (51 - 10 Sqrt[2])^(
1/4)) ((1 - 2 I) - 2 Sqrt[-7 - I])^((-1 - I) (51 - 10 Sqrt[2])^(
1/4)) (-5 I + (4 - 2 I) Sqrt[-7 - I])^(-2 Sqrt[
7 + I]) ((1 + 2 I) - 2 Sqrt[-7 + I])^(2 Sqrt[-7 + I])] -
I Sqrt[7 - I] Log[(-1 + Sqrt[-1 - I])^2] -
I Sqrt[7 - I] Log[(1 + Sqrt[-1 - I])^2] -
Sqrt[7 + I] Log[(-1 + Sqrt[-1 + I])^2] -
Sqrt[7 + I] Log[(1 + Sqrt[-1 + I])^2] + (1 - 2 I) Sqrt[1 - I]
Log[(1 + I) - Sqrt[1 - I]] - (2 - I) Sqrt[1 + I]
Log[(1 + I) - Sqrt[1 - I]] - (1 - 2 I) Sqrt[1 - I]
Log[(1 + I) + Sqrt[1 - I]] + (2 - I) Sqrt[1 + I]
Log[(1 + I) + Sqrt[1 - I]] +
I Sqrt[7 - I] Log[(-60 - 4 I) + 8 Sqrt[-1 - I] - 24 Sqrt[7 - I]] +
I Sqrt[7 - I] Log[(66 - 14 I) + 8 Sqrt[-1 - I] + 24 Sqrt[7 - I]] +
Sqrt[7 + I] Log[(-60 + 4 I) + 8 Sqrt[-1 + I] - 24 Sqrt[7 + I]] +
Sqrt[7 + I] Log[(66 + 14 I) + 8 Sqrt[-1 + I] + 24 Sqrt[7 + I]] +
I Log[((1 + 2 I) - 2 Sqrt[-7 + I])^(
2 Sqrt[7 - I]) ((-60 + 4 I) - 16 Sqrt[14 - 2 I])^-Sqrt[-7 -
I] ((-60 - 4 I) - 16 Sqrt[14 + 2 I])^-Sqrt[
7 - I] ((-(153/100) + (71 I)/100) + 2/25 Sqrt[287 - 359 I])^
Sqrt[-7 -
I] ((-(153/2500) - (71 I)/2500) + 2/625 Sqrt[287 + 359 I])^
Sqrt[7 - I]])
Best wishes
Artur
- References:
- Re: error region in parametric plot
- From: m.r@inbox.ru
- Re: Re: Re: Nested If
- From: Syd Geraghty <sydgeraghty@me.com>
- Re: error region in parametric plot