Re: Manipulate + ListPlot3D +...
- To: mathgroup at smc.vnet.net
- Subject: [mg99246] Re: Manipulate + ListPlot3D +...
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Thu, 30 Apr 2009 06:32:56 -0400 (EDT)
- References: <gt90ng$l49$1@smc.vnet.net>
Hi Ossamma,
try this:
CreateDocument[
{
Manipulate[
Show[
{
ListPlot3D[{LuF3Csa[1.9745, \[Alpha]],
Table[{x, 0, z}, {x, -1, 2}, {z, -1, 0}]},
PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0},
PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0},
MeshStyle -> Yellow, Axes -> True, Boxed -> True,
PlotRangePadding -> None, PlotRange -> All
],
Graphics3D[{PointSize[0.05], Point[LuF3Csa[1.9745, \[Alpha]]]}]
}
],
{\[Alpha], 110 (Pi/180), 2 Pi/3},
Control[{\[Alpha], {105 (Pi/180), 110 (Pi/180), 115 (Pi/180),
2 Pi/3}}]
],
Button["Close", NotebookClose[]]
}, WindowSize -> {700, 700}
]
Cheers -- Sjoerd
On Apr 29, 9:48 am, Ossama Kullie <okul... at chimie.u-strasbg.fr> wrote:
> Dear Mathematica user,
>
> I have the following graphics,
>
> --------------------------------------------cut here
>
> R =.; \[Alpha] =.;
> LuF3Csa[R_, \[Alpha]_] := {{0 , 0, 0}, {(2*R*Sin[\[Alpha]/2])/Sqrt[3],
> 0, -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/
> Sqrt[3])}, {-(R*Sin[\[Alpha]/2])/Sqrt[3],
> R*Sin[\[Alpha]/2], -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/
> Sqrt[3])}, {-(R*Sin[\[Alpha]/2])/Sqrt[3], -R*
> Sin[\[Alpha]/2], -(Sqrt[R^2*(1 + 2*Cos[\[Alpha]])]/Sqrt[3])}}
>
> CreateDocument[{Manipulate[
> ListPlot3D[{LuF3Csa[1.9745, \[Alpha]],
> Table[{x, 0, z}, {x, -1, 2}, {z, -1, 0}]},
> PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0},
> PlotStyle -> {PointSize[0.05]}, AxesOrigin -> {0, 0, 0},
> MeshStyle -> Yellow, Axes -> True, Boxed -> True,
> PlotRangePadding -> None, PlotRange -> All], {\[Alpha],
> 110 (Pi/180), 2 Pi/3},
> Control[{\[Alpha], {105 (Pi/180), 110 (Pi/180), 115 (Pi/180),
> 2 Pi/3}}]], Button["Close", NotebookClose[]]},
> WindowSize -> {700, 700}]
>
> --------------------------------------------------------------
>
> It is the molecule LuF3 with a pyramid shape geometry. I want to
> include the atoms, point-like at the four top points of the pyramids,
> which can move with the shape pf the molecule when the structure of
> the molecules changes with manipulate.
> Can you help me please?
>
> Best Regards,
> O. Kullie