Re: solving for a second function
- To: mathgroup at smc.vnet.net
- Subject: [mg102344] Re: [mg102308] solving for a second function
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Thu, 6 Aug 2009 06:30:57 -0400 (EDT)
- References: <200908050942.FAA18127@smc.vnet.net>
Roger Bagula wrote:
> Yesterday I got an half Lemniscate complex function:
> a = 1; b = 1;
> f[t_] = (a*1 + b*I)/(a*1 + b*I*Exp[t]) - 1
> FullSimplify[f[t]/f[t/2]]
> gives:
> (1 + 1/(Cosh[t/2] + I*Sinh[t/2]))
> I want to solve for the other function:
> g[t]/g[t/2]=(1 + 1/(-Cosh[t/2] + I*Sinh[t/2]))
>
> Graphics showing this:x = Re[1 + 1/(Cosh[t] + I*Sinh[t])];
> y = Im[1 + 1/(Cosh[t] + I*Sinh[t])];
> z = x + I*y;
> g1 = ParametricPlot[{x, y}, {t, -5*Pi, 5*Pi}, AspectRatio ->
> Automatic]
> (*The other half is: *)
> x = Re[1 + 1/(-Cosh[t] + I*Sinh[t])];
> y = Im[1 + 1/(-Cosh[t] + I*Sinh[t])];
> z = x + I*y;
> g0 = ParametricPlot[{x, y}, {t, -5*Pi, 5*Pi}, AspectRatio ->
> Automatic]
> Show[{g1, g0}]
>
> Any help will be appreciated.
> Roger Bagula
Not quite in the requested form, but here goes.
Start with:
x = Re[1 + 1/(Cosh[t] + I*Sinh[t])];
y = Im[1 + 1/(Cosh[t] + I*Sinh[t])];
We translate so it is centered at the origin, then form a
parametrization in terms of rational functions, by converting to
exponentials and swapping Exp[t] for a new variable, r.
ratparam =
Together[TrigToExp[
ComplexExpand[TranslationTransform[{-1, 0}][{x, y}]]] /.
Exp[n_.*t] -> r^n]
From here we observe that the other parametrization is from swapping
x<-->-x, or alternatively by a 108 degree rotation. We compute this.
otherratparam = RotationTransform[Pi][ratparam];
Now translate back to the original coordinates (where the figure is
centered at {1,0}, then convert to exponentials.
In[359]:= otherratparamtrans =
Simplify[TranslationTransform[{1, 0}][otherratparam] /. r -> Exp[t]]
Out[359]= {1 - (E^t + E^(3 t))/(1 + E^(4 t)), (E^t (-1 + E^(2 t)))/(
1 + E^(4 t))}
Daniel Lichtblau
Wolfram Research
- References:
- solving for a second function
- From: Roger Bagula <roger.bagula@gmail.com>
- solving for a second function