Re: Incongruence? hmm...
- To: mathgroup at smc.vnet.net
- Subject: [mg102760] Re: Incongruence? hmm...
- From: garrido at ruth.upc.edu
- Date: Wed, 26 Aug 2009 07:44:17 -0400 (EDT)
Hi Filippo,
FourierCosCoefficient[
1/720 (8 \[Pi]^4 - 60 \[Pi]^2 x^2 + 60 \[Pi] Abs[x]^3 - 15 x^4), x, m]
1/m^4
1/720 (8 \[Pi]^4 - 60 \[Pi]^2 x^2 + 60 \[Pi] Abs[x]^3 - 15 x^4) /.
x -> Mod[x, 2 Pi]
1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 -
60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 - 15 Mod[x, 2 \[Pi]]^4)
Plot[{Sum[Cos[m x]/m^4, {m, 1, \[Infinity]}],
1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 -
60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 - 15 Mod[x, 2 \[Pi]]^4)}, {x, -10,
10}];
Therefore,
Sum[Cos[m x]/m^4, {m, 1, \[Infinity]}] =
1/720 (8 \[Pi]^4 + 60 \[Pi] Abs[Mod[x, 2 \[Pi]]]^3 -
60 \[Pi]^2 Mod[x, 2 \[Pi]]^2 -
15 Mod[x, 2 \[Pi]]^4) for everything x Real.
Regards,
J.L.Garrido
--
Aquest missatge ha estat analitzat per MailScanner
a la cerca de virus i d'altres continguts perillosos,
i es considera que està net.
For all your IT requirements visit: http://www.transtec.co.uk