Re: Re: Scalar plot in 3D
- To: mathgroup at smc.vnet.net
- Subject: [mg96473] Re: [mg96409] Re: Scalar plot in 3D
- From: Franco Milicchio <franco.milicchio at gmail.com>
- Date: Sat, 14 Feb 2009 03:10:21 -0500 (EST)
- References: <gn11bt$7tg$1@smc.vnet.net> <200902130841.DAA26539@smc.vnet.net>
On Feb 13, 2009, at 9:41am, dh wrote:
> Hi Franco,
>
> here is an example where the z-value is color coded:
>
> ParametricPlot3D[{{4 + (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u],
> 4 + Sin[v]}}, {u, 0, 2 Pi}, {v, 0, 2 Pi},
> ColorFunction -> Function[{x, y, z}, Hue[z]]]
>
> her another one where the distance from the origin defines the color:
>
> ParametricPlot3D[{{4 + (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u],
> 4 + Sin[v]}}, {u, 0, 2 Pi}, {v, 0, 2 Pi},
> ColorFunction -> Function[{x, y, z}, Hue[Norm[{x, y, z}]]]]
>
> hope this helps, Daniel
Hi Daniel,
Thanks, that helped a lot! It is quite strage to me that ColorFunction
needs a unitary interval [0, 1], so I will scale down my domain and
then use the Nearest[] function to find the scalar value "near" to a
given point.
Thanks!
--
Franco Milicchio <franco.milicchio at gmail.com>
DiS - Dept. of Studies on Structures
DIA - Dept. of Computer Science and Engineering
University Roma Tre
http://plm.dia.uniroma3.it/milicchio/
- References:
- Re: Scalar plot in 3D
- From: dh <dh@metrohm.com>
- Re: Scalar plot in 3D