Re: Derivative
- To: mathgroup at smc.vnet.net
- Subject: [mg95872] Re: Derivative
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 29 Jan 2009 05:52:08 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <glpgeg$lin$1@smc.vnet.net>
In article <glpgeg$lin$1 at smc.vnet.net>,
"Cetin Haftaoglu" <cetin.haftaoglu at bam.de> wrote:
> I have a function
>
> Norton[arg_,exp_,nenner_]:= MCB[arg / nenner]^exp
>
> I want to define my own deviation of the function Norton,
> D[Norton[arg,exp,nen],y[1]]:=dNdx[arg,exp,nen]
>
> arg depends on y[1].
>
> I have tried it with
>
> Derivative[1,0,0][Norton][arg_,n_,k_]:=dNdx[arg,n,k]
>
> But I get an error.
Assuming I have correctly understood what you want, define an upvalue
should do it. For instance,
In[1]:= Norton /: D[Norton[arg_, n_, k_], arg] := dNdx[arg, n, k]
In[2]:= UpValues[Norton]
Out[2]= {HoldPattern[\!\(
\*SubscriptBox[\(?\), \(arg\)]\(Norton[arg_, n_, k_]\)\)] :> dNdx[arg,
n, k]}
In[3]:= Norton[arg_, exp_, nenner_] := MCB[arg/nenner]^exp
In[4]:= ?Norton
Global`Norton
Norton/:\!\(
\*SubscriptBox[\(?\), \(arg\)]\(Norton[arg_, n_, k_]\)\):=dNdx[arg,n,k]
Norton[arg_,exp_,nenner_]:=MCB[arg/nenner]^exp
Regards,
--Jean-Marc