Re: Do some definite integral calculation.
- To: mathgroup at smc.vnet.net
- Subject: [mg99488] Re: [mg99393] Do some definite integral calculation.
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Wed, 6 May 2009 05:28:59 -0400 (EDT)
- References: <200905050938.FAA20515@smc.vnet.net>
- Reply-to: drmajorbob at bigfoot.com
> theta := arcsin(a*x^2+b*x+c); > int(tan(theta),x); I probably should have done it that way in Mathematica: theta = ArcSin[a*x^2 + b*x + c]; Integrate[Tan[theta], x] or just Integrate[Tan@ArcSin[a*x^2 + b*x + c], x] There are still multiple possible answers, and I'm not sure which method gives a simpler one. Answers can differ by a constant, and in general, Integrate outputs can also be discontinuous on the real line, so that the Fundamental Theorem of Integral Calculus doesn't apply. Bobby On Tue, 05 May 2009 21:24:47 -0500, <hongyi.zhao at gmail.com> wrote: > On Wednesday, May 6, 2009 at 1:19, btreat1 at austin.rr.com wrote: >> Your post is unreadable, but guesswork leads me to: > >> Clear[a, b, c, x, theta] >> Off[Solve::"ifun"] >> tanTheta = >> t /. Last@ >> Solve[{t == Tan[theta], Sin[theta] == a x^2 + b x + c}, t, >> theta] // Simplify > >> Sqrt[-(c + x (b + a x))^2]/Sqrt[-1 + c^2 + b^2 x^2 + 2 a b x^3 + >> a^2 x^4 + 2 c x (b + a x)] > > Thanks a lot, you're absolutely right. > >> (First could be used, rather than Last.) > > What do mean by saying this? > >> y=Integrate[tanTheta, x] > >> (2 c ((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) Sqrt[((-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x))/((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x))] (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x)^2 Sqrt[((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b - Sqrt[4 a + b^2 - 4 a c])/(2 a)) + >> x))/((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b - Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] >> Sqrt[((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)) + >> x))/((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] >> Sqrt[-1 + c^2 + 2 b c x + b^2 x^2 + 2 a c x^2 + 2 a b x^3 + >> a^2 x^4] Sqrt[-(c + x (b + a x))^2] >> EllipticF[ >> ArcSin[Sqrt[((-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x))/((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x))]], (((-b + Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b - Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) ((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)))/(((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b - Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) ((-b + Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)))])/((-((-b - >> Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/(2 a)) Sqrt[-1 + c^2 + >> 2 b c x + (b^2 + 2 a c) x^2 + 2 a b x^3 + >> a^2 x^4] (c + x (b + a x)) Sqrt[-1 + c^2 + b^2 x^2 + 2 a b x^3 + >> a^2 x^4 + >> 2 c x (b + a x)]) + (2 b ((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x)^2 Sqrt[( >> Sqrt[-4 a + b^2 - >> 4 a c] (-((-b - Sqrt[4 a + b^2 - 4 a c])/(2 a)) + x))/( >> a (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b - Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] Sqrt[( >> Sqrt[-4 a + b^2 - >> 4 a c] (-((-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)) + x))/( >> a (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] >> Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[4 a + b^2 - 4 a c]) (b + >> Sqrt[-4 a + b^2 - 4 a c] + 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + >> Sqrt[4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))] >> Sqrt[-1 + c^2 + 2 b c x + b^2 x^2 + 2 a c x^2 + 2 a b x^3 + >> a^2 x^4] Sqrt[-(c + x (b + a x))^2] (-(1/( >> 2 a))(-b + Sqrt[-4 a + b^2 - 4 a c]) EllipticF[ >> ArcSin[Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))]], (Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c])^2/(Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c])^2] + (1/a) >> Sqrt[-4 a + b^2 - 4 a c] >> EllipticPi[(-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[4 a + b^2 - 4 a c])/( >> 2 a))/(-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/(2 a)), >> ArcSin[Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))]], (Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c])^2/(Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c])^2]))/((-((-b - >> Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) ((-b + Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)) Sqrt[-1 + c^2 + >> 2 b c x + (b^2 + 2 a c) x^2 + 2 a b x^3 + >> a^2 x^4] (c + x (b + a x)) Sqrt[-1 + c^2 + b^2 x^2 + 2 a b x^3 + >> a^2 x^4 + 2 c x (b + a x)]) + (a Sqrt[-1 + c^2 + 2 b c x + >> b^2 x^2 + 2 a c x^2 + 2 a b x^3 + a^2 x^4] >> Sqrt[-(c + >> x (b + a x))^2] ((-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + >> x) (-((-b - Sqrt[4 a + b^2 - 4 a c])/(2 a)) + >> x) (-((-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)) + >> x) + (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x)^2 Sqrt[( >> Sqrt[-4 a + b^2 - >> 4 a c] (-((-b - Sqrt[4 a + b^2 - 4 a c])/(2 a)) + x))/( >> a (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b - Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] >> Sqrt[(Sqrt[-4 a + b^2 - >> 4 a c] (-((-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)) + x))/( >> a (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/( >> 2 a)) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + x))] >> Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))] ((1/Sqrt[-4 a + b^2 - 4 a c]) >> a (-((-b - Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b - Sqrt[ >> 4 a + b^2 - 4 a c])/(2 a)) EllipticE[ >> ArcSin[Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))]], (Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c])^2/(Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ > >> 4 a + b^2 - >> 4 a c])^2] + (a (((-b + >> Sqrt[-4 a + b^2 - >> 4 a c]) (-((-b + Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) - (-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)))/( >> 2 a) - ((-b - >> Sqrt[-4 a + b^2 - 4 a c]) ((-b + >> Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/(2 a)))/( >> 2 a)) EllipticF[ >> ArcSin[Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))]], (Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c])^2/(Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c])^2])/(Sqrt[-4 a + b^2 - >> 4 a c] (-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[4 a + b^2 - 4 a c])/( >> 2 a))) - ((-((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) - (-b + Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a) - (-b - Sqrt[4 a + b^2 - 4 a c])/( >> 2 a) - (-b + Sqrt[4 a + b^2 - 4 a c])/( >> 2 a)) EllipticPi[(-((-b - Sqrt[-4 a + b^2 - 4 a c])/( >> 2 a)) + (-b + Sqrt[4 a + b^2 - 4 a c])/( >> 2 a))/(-((-b + Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + >> Sqrt[4 a + b^2 - 4 a c])/(2 a)), >> ArcSin[Sqrt[((Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c]) (b + Sqrt[-4 a + b^2 - 4 a c] + >> 2 a x))/((Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c]) (-b + Sqrt[-4 a + b^2 - 4 a c] - >> 2 a x))]], (Sqrt[-4 a + b^2 - 4 a c] + Sqrt[ >> 4 a + b^2 - 4 a c])^2/(Sqrt[-4 a + b^2 - 4 a c] - Sqrt[ >> 4 a + b^2 - 4 a c])^2])/(-((-b + >> Sqrt[-4 a + b^2 - 4 a c])/(2 a)) + (-b + Sqrt[ >> 4 a + b^2 - 4 a c])/(2 a)))))/(Sqrt[-1 + c^2 + >> 2 b c x + (b^2 + 2 a c) x^2 + 2 a b x^3 + >> a^2 x^4] (c + x (b + a x)) Sqrt[-1 + c^2 + b^2 x^2 + 2 a b x^3 + >> a^2 x^4 + 2 c x (b + a x)]) > >> How's that? > > I then use another to do this issue with the following codes: > > theta := arcsin(a*x^2+b*x+c); > int(tan(theta),x); > > The result is also very long, but I don't know whether both are > equivalent. > > Thanks a lot. -- DrMajorBob at bigfoot.com
- References:
- Do some definite integral calculation.
- From: Hongyi <hongyi.zhao@gmail.com>
- Do some definite integral calculation.