Re: volume calculation
- To: mathgroup at smc.vnet.net
- Subject: [mg100255] Re: volume calculation
- From: "andre.robin3" <andre.robin3 at wanadoo.fr>
- Date: Fri, 29 May 2009 20:59:05 -0400 (EDT)
- References: <gvn74b$ets$1@smc.vnet.net>
Use : Integrate[ Boole[D(x1,x2,x3,...,xn) < L ], {x1,x1min,x1max} ...{xn,xnMin,xnMax} ] Try also: - NIntegrate instead of Integrate - Infinity (-Infinity) instead max boundaries (min boundaries) it works fine symbolically and numericaly "Filippo Miatto" <miatto at gmail.com> a écrit dans le message de news: gvn74b$ets$1 at smc.vnet.net... > Dear all, > I need a way to find the volume of a multidimensional shape in the > coordinates (x1,x2,x3,...,xn), that comes from an inequality like > D(x1,x2,x3,...,xn) < L (with 3 variables i get a nice weird shape in > R^3, with more i don't plot it) > In other words I let Mathematica calculate where in the space of the > solutions the inequality is solved and i'd like to have the numerical > "volume of the solutions". > What strategy should i use? The function D is not invertible... > Thank you, > Filippo > > > > ------------------------------------------------------------ > Mobile (IT): +39 340 6104269 > Mobile (NL): +31 064 3949827 > Home (IT): +39 0438 59360 > > P.O. Box 9504 > NL 2300 RA LEIDEN > > msn: dr.ziofil at hotmail.com > skype: filippo.miatto > Quantum Optics > Group Mail: miatto at molphys.leidenuniv.nl >