Re: Mathematica Collect function
- To: mathgroup at smc.vnet.net
- Subject: [mg110716] Re: Mathematica Collect function
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 3 Jul 2010 08:17:43 -0400 (EDT)
- References: <i0k2gi$js4$1@smc.vnet.net>
Am Fri, 2 Jul 2010 06:55:14 +0000 (UTC)
schrieb Minh <dminhle at gmail.com>:
> Given that:
> Expand[((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/
> 4*(P20 - P21)]
>
> will output
> -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - (
> i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (
> i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4
>
> How do I get from:
> -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - (
> i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (
> i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4
>
> back to
> ((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/
> 4*(P20 - P21)
>
> I've tried using the Collect function as follows:
> Collect[-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/
> 4 - (i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (i P20)/4 + P21/
> 4 + P21/(2 Sqrt[2]) + (i P21)/4, {(P10 - P11), (P20 - P21)}]
> but it doesn't seem to collect the terms {(P10 - P11), (P20 - P21)}.
>
> Got any suggestions?
>
Introduce temporary expressions Q1,Q1 and do a backsubstituation after
Collect[]ing:
In[7]:= Collect[-(P10/4)+(i P10)/4+(i P10)/(2 Sqrt[2])+P11/4-(i
P11)/4-(i P11)/(2 Sqrt[2])-P20/4-P20/(2 Sqrt[2])-(i P20)/4+P21/4+P21/(2
Sqrt[2])+(i P21)/4 /.
{P10->Q1+P11,P20->Q2+P21},Q1|Q2,FullSimplify] /.
{Q1->P10-P11,Q2->P20-P21}
Out[7]= 1/4 (-1+i+Sqrt[2] i) (P10-P11)+1/4 (-1-Sqrt[2]-i) (P20-P21)
There is a difference in your outcome and mine. I think you've got the
wrong sign for the factor of (P10-P11) and misspelled an "i" by "1".
hth,
Peter