Re: DownValues
- To: mathgroup at smc.vnet.net
- Subject: [mg113719] Re: DownValues
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 9 Nov 2010 03:52:00 -0500 (EST)
The documentation on SubValues is extremely limited but it is not totally undocumented.
Names["*Values"]
{DefaultValues, DownValues, DynamicModuleValues, FormatValues, NValues, OwnValues, SingularValues, SubValues, UpValues}
Information[SubValues]
SubValues[f] gives a list of transformation rules corresponding to all subvalues (values for f[x,\[Ellipsis]][\[Ellipsis]], etc.) defined for the symbol f.
Attributes[SubValues]={HoldAll,Protected}
Options[SubValues]={Sort->True}
It is also referenced in:
ref/message/DownValues/vlist
ref/message/DownValues/vrule
ParallelTools/tutorial/RemoteDefinitions
Bob Hanlon
---- Albert Retey <awnl at gmx-topmail.de> wrote:
=============
Am 08.11.2010 09:38, schrieb Stephan:
> Hi,
>
> Is there any way to find out about definitions like:
>
> f[1][2] = 3 ?
>
> Here is a sample run:
>
> In[1]:= f[1][2] = 3
> Out[1]= 3
> In[2]:= DownValues[f]
> Out[2]= {}
> In[3]:= DownValues[f[1]]
> During evaluation of In[3]:= DownValues::"sym" : "
> StyleBox[\"\\\"\< is expected to be a symbol.\>\\\"\", \"MT\"] \
> Out[3]= DownValues[f[1]]
>
> So with "DownValues" I can't seem to learn about the definition f[1][2]...
SubValues, unfortunatly seem to be undocumented, but gives you what you
are looking for:
SubValues[f]
hth,
albert