Re: Can somebody integrate this function ?
- To: mathgroup at smc.vnet.net
- Subject: [mg112548] Re: Can somebody integrate this function ?
- From: chengjun wang <wangchj04 at gmail.com>
- Date: Sun, 19 Sep 2010 05:39:56 -0400 (EDT)
-(z (13440 Sqrt[3] y^13 (-2 + z) - 2240 y^14 (-2 + z) +
1120 y^12 (162 - 81 z - 4 z^2 + 3 z^3) +
72 Sqrt[3] y^7 z^4 (2856 - 2485 z - 822 z^2 + 798 z^3) +
3 (3 - 2 z)^2 z^10 (-3240 + 6615 z - 4480 z^2 + 1008 z^3) -
224 Sqrt[3] y^11 (810 - 405 z - 40 z^2 - 5 z^3 + 28 z^4) +
756 y^10 (270 - 135 z + 80 z^2 - 200 z^3 + 112 z^4) +
24 Sqrt[3]
y^9 z^2 (-7560 + 12285 z - 4396 z^2 - 1260 z^3 + 440 z^4) -
12 Sqrt[3]
y^5 z^6 (-24912 + 49203 z - 30632 z^2 + 4844 z^3 + 728 z^4) +
27 y^4 z^6 (-20880 + 38745 z - 20424 z^2 + 400 z^3 +
1456 z^4) +
4 Sqrt[3]
y^3 z^8 (23328 - 63369 z + 64398 z^2 - 29024 z^3 +
4896 z^4) -
18 y^2 z^8 (21060 - 55935 z + 54630 z^2 - 22594 z^3 +
2776 z^4 + 280 z^5) -
6 y^8 z^2 (-56700 + 82215 z + 3864 z^2 - 43960 z^3 + 8592 z^4 +
3192 z^5) +
4 y^6 z^4 (-34020 - 14175 z + 44442 z^2 + 27342 z^3 -
40840 z^4 + 9288 z^5)))/(224 (-9 y^2 + 2 Sqrt[3] y^3 +
3 z^2 (-3 + 2 z))^2)
On Sat, Sep 18, 2010 at 7:25 PM, c r <riemannchristoffel at gmail.com> wrote:
> Can somebody try this in your version of Mathematica ?
>
> Integrate[(5/12) (-1 + z) (y^2 - 3 z^2) (27 y^4 - 12 Sqrt[3] y^5 +
> 4 y^6 + 18 y^2 (3 - 2 z) z^2 + 3 (3 - 2 z)^2 z^4 +
> 4 Sqrt[3] y^3 z^2 (-3 + 2 z)), z]
>
> Something is definitely wrong with my version of Mathematica (7).
>
>
>