Re: Convert function from polar to Cartesian
- To: mathgroup at smc.vnet.net
- Subject: [mg112783] Re: Convert function from polar to Cartesian
- From: Peter Breitfeld <phbrf at t-online.de>
- Date: Thu, 30 Sep 2010 04:52:15 -0400 (EDT)
- References: <i7usgt$rdn$1@smc.vnet.net>
Sam Takoy wrote:
> Hi,
>
> I've stumbled onto an unexpected problem. I have a function in polar
> coordinate and I need to convert it to Cartesian coordinates:
>
> fPolar[r_, a_] = r^2 Cos[2 a];
> fCart[x_, y_] = fPolar[Sqrt[x^2 + y^2], ArcTan[x, y]];
> fCart[x, y]
>
> I get: (x^2 + y^2) Cos[2 ArcTan[x, y]].
>
> But how to get rid of the ArcTan[x, y]? I've tried this:
>
> fCart[x, y] //
> TrigExpand /. {Cos[ArcTan[x, y]] -> x/Sqrt[x^2 + y^2],
> Sin[ArcTan[x, y]] -> y/Sqrt[x^2 + y^2]}
>
> but it does not do the substitution I need it to do. So what's the
> proper way to get rid of the ArcTan[x, y] and for the simple example
> above, to obtain x^2 - y^2?
>
>
> Many thanks in advance,
>
> Sam
>
I think you can't always get rid of the ArcTan, but this works for your
case:
cartRule = {r -> Sqrt[x^2 + y^2], a -> ArcTan[x, y]};
(((fPolar[r, a] // TrigToExp) /. cartRule) // FullSimplify) // Expand
Out= x^2 - y^2
--
_________________________________________________________________
Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de