Re: Solve vs. nonlinearity
- To: mathgroup at smc.vnet.net
- Subject: [mg118256] Re: Solve vs. nonlinearity
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Mon, 18 Apr 2011 06:49:51 -0400 (EDT)
Umm... evaluate the code?
myL = w1*n + w2*k + g*(q0^r - (a*n^r + (1 - a) k^r));
grad = D[myL, {{n, k, g}}]
Solve[grad == 0, {n, k, g}]
{-a g n^(-1 + r) r + w1, -(1 - a) g k^(-1 + r) r + w2, -(1 - a) k^r -
a n^r + q0^r}
{{n -> ((((k^(1 - r))^(1/(1 - r)))^(-1 + r) (w1 - a w1))/(a w2))^(
1/(-1 + r)), g -> -((k^(1 - r) w2)/((-1 + a) r))}}
Bobby
On Sun, 17 Apr 2011 18:15:04 -0500, Alan <alan.isaac at gmail.com> wrote:
> Is there a simple way to approach getting Mathematica to
> produce a solution in the following problem?
> (Without assigning to r.)
>
> myL = w1*n + w2*k + g*(q0^r - (a*n^r + (1-a) k^r));
> grad = D[myL, {{n, k, g}}]
> Solve[grad == 0, {n, k, g}]
>
> Thanks,
> Alan Isaac
>
--
DrMajorBob at yahoo.com