Re: Animation

• To: mathgroup at smc.vnet.net
• Subject: [mg120746] Re: Animation
• From: Heike Gramberg <heike.gramberg at gmail.com>
• Date: Tue, 9 Aug 2011 07:17:10 -0400 (EDT)
• Delivered-to: l-mathgroup@mail-archive0.wolfram.com
• References: <201108080818.EAA04542@smc.vnet.net>

```Do you mean something like this?

Manipulate[m = 1.0;
b1 = 1;
b2 = 0;
b3 = 0;
{x1, x2, x3} =
b1*Cos[t]*{1, 0, -1} +
b2*Cos[Sqrt[(2 + Sqrt[2])]*t]*{1, -Sqrt[2], 1} +
b3*Cos[Sqrt[(2 - Sqrt[2])]*t]*{1, Sqrt[2], 1};
balls = Graphics[{Black,
Line[{{0, 0}, {1, x1}, {2, x2}, {3, x3}, {4, 0}}],
Red, {Disk[{1, x1}, .1 Sqrt[m]], Disk[{2, x2}, .1 Sqrt[m]],
Disk[{3, x3}, .1 Sqrt[m]]}}, PlotRange -> {{0, 4}, {-1, 1}},
Frame -> True, ImageSize -> {400, 250}], {t, 0, 2 Pi}]

If you replace Manipulate with Animate you get an actual animation.

Heike.

On 8 Aug 2011, at 10:18, DaleJenk wrote:

> How can I animate the following:
>
> Manipulate[
> m = 1.0;
> b1 = 1;
> b2 = 0;
> b3 = 0;
> {x1, x2, x3} =
>  a = b1*Cos[t]*{1, 0, -1} +
>    b2*Cos[Sqrt[(2 + Sqrt[2])]*t]*{1, -Sqrt[2], 1} +
>    b3*Cos[Sqrt[(2 - Sqrt[2])]*t]*{1, Sqrt[2], 1}, {t, 0, 5}]
> balls = Graphics[{Black,
>   Line[{{0, 0}, {1, x1}, {2, x2}, {3, x3}, {4, 0}}],
>   Red, {Disk[{1, x1}, .1 Sqrt[m]], Disk[{2, x2}, .1 Sqrt[m]],
>    Disk[{3, x3}, .1 Sqrt[m]]}}, PlotRange -> {{0, 4}, {-1, 1}},
>  Frame -> True, ImageSize -> {400, 250}]
>
>
> Thanks for any help.
>
>

```

• References:
• Animation