Re: Parameter Optimization to match a PDE solution to experimental results
- To: mathgroup at smc.vnet.net
- Subject: [mg120986] Re: Parameter Optimization to match a PDE solution to experimental results
- From: Gabriel Landi <gtlandi at gmail.com>
- Date: Sat, 20 Aug 2011 06:17:47 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201108191032.GAA23915@smc.vnet.net>
Check out the example in here http://reference.wolfram.com/mathematica/ref/NonlinearModelFit.html under the tab "Generalizations and Extensions". The idea is that it is possible to fit data to a function which is not in analytic form. Hope it helps. Gabriel On Aug 19, 2011, at 7:32 AM, Alexandre Santos Abreu wrote: > Hello! > > I am new to Mathematica and want to know if my problem can be solved using it. > > I have a modified diffusion equation: > dc/dt == D d^2c/dx^2 - rc exp(-n t) > > D: diffusion coefficient > r: reaction rate > c: concentration > n: time constant > > What i need to do is finding the right parameter combination (D, r, n) in > such a manner that the solution of the PDE corresponds to my experimental > results. I already achieved numerical solving of the differential equation > but i don't know if it is possible to use some fitting routine for the > parameter optimization. > > I hope i described my problem clearly. > > Thanks for your help! > > Alex > > > -- > Universit=E4t Augsburg > Institut f=FCr Physik > Lehrstuhl f=FCr Experimentalphysik II > Universit=E4tsstr. 1 > 86159 Augsburg > > Tel.: 0821 598 3453 > Fax: 0821 598 3411 > e-mail: alexandre.abreu at physik.uni-augsburg.de >
- References:
- Parameter Optimization to match a PDE solution to experimental results
- From: "Alexandre Santos Abreu" <alexandre.abreu@physik.uni-augsburg.de>
- Parameter Optimization to match a PDE solution to experimental results