Re: Ploting a transformation of a set
- To: mathgroup at smc.vnet.net
- Subject: [mg123425] Re: Ploting a transformation of a set
- From: Dan <dflatin at rcn.com>
- Date: Wed, 7 Dec 2011 06:13:07 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <4EDCB5F0.813B.006A.0@newcastle.edu.au> <jbkj0l$i30$1@smc.vnet.net>
Here is another version of the grid approach, this time using grid
lines conforming to the color function used in the thread above.
Manipulate[
Module[{g1,g2,map,opts,n=5,pp,ppm},
g1[t_,k_]:=2{t+(k/n),-t};
g2[t_,k_]:=2{t-(k/n),t};
map=({x,y}\[Function]{(x+a y)^b,(a x+y)^b});
opts=Sequence[PlotRange->{{0,2},{0,2}},
Frame->True,Axes->False,
ImageSize->200,ImagePadding->{{30,5},{20,5}}];
pp[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[g[t,k],
{k,kmin,kmax}],{t,-5,5},
PlotStyle->color,Evaluate@opts
];
ppm[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[map@@g[t,k],
{k,kmin,kmax}],{t,-5,5},
PlotStyle->color,Evaluate@opts
];
Grid[{{
Show[{pp[g1,0,2n,ColorData[1][1]],pp[g2,-n,n,ColorData[1][2]]}],
Show[{ppm[g1,0,2n,ColorData[1][1]],ppm[g2,-n,n,ColorData[1]
[2]]}]
}}]
],
{{a,0.5},0,1,0.05},
{{b,0.5},0.1,1,0.05}
]